Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Changes in EEG indices and serotonin concentrations in depression and anxiety disorders

https://doi.org/10.14412/2074-2711-2016-3-34-38

Full Text:

Abstract

Electroencephalogram (EEG) is an important tool to study brain function. EEG can evaluate the current functional state of the brain with high temporal resolution and identify metabolic and ion disorders that cannot be detected by magnetic resonance imaging.

Objective: to analyze the relationship between some neurophysiological and biochemical parameters with a Neuro-KM hardware-software complex for the topographic mapping of brain electrical activity.

Patients and methods. 75 patients with depression, 101 with anxiety disorders (AD), and 86 control individuals were examined. EEG spectrum and coherence changes were estimated in the depression and AD groups versus the control group. Correlation analysis of EEG indices and blood serotonin concentrations was carried out.

Results and discussion. The patients with depression and those with AD as compared to the controls were observed to have similar EEG spectral changes in the beta band. Coherence analysis in the beta-band showed that both disease groups versus the control group had oppositely directed changes: a reduction in intra- and interhemispheric coherence for depression and its increase for AD (p < 0.001). That in the theta and alpha bands revealed that both disease groups had unidirectional interhemispheric coherence changes: a decrease in integration in the alpha band and its increase in the theta and delta bands in the depression and AD groups (p < 0.05) and multidirectional changes in intrahemispheric coherence: its reduction in the depression group and an increase in the AD group (p < 0.05). Correlation analysis of EEG parameters and platelet serotonin concentrations showed opposite correlations of serotonin concentrations and EEG percentage power in the theta and beta bands. When there were higher serotonin concentrations in the patients with depression, EEG demonstrated a preponderance of a synchronization pattern; when these were in the patients with AD, there was a predominance of a desynchronization pattern.

Conclusion. The specific features of EEG in the depression and AD groups may indicate serotonin metabolic disorders and the efficiency of therapy with selective serotonin reuptake inhibitors.

About the Authors

I. V. Kichuk
Department of Fundamental and Clinical Neurology and Neurosurgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia; 1, Ostrovityanov St., Moscow 117997 Research Institute for Cerebrovascular Diseases and Stroke, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia 1, Ostrovityanov St., Moscow 117997
Russian Federation


E. A. Petrova
Department of Fundamental and Clinical Neurology and Neurosurgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia; 1, Ostrovityanov St., Moscow 117997 Research Institute for Cerebrovascular Diseases and Stroke, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia 1, Ostrovityanov St., Moscow 117997
Russian Federation


A. A. Mitrofanov
Neurometrix Research and Production Firm, Mental Health Research Center, Moscow, Russia 34, Kashirskoe Shosse, Moscow 115522
Russian Federation


N. V. Solovyeva
Research Center for Personalized Psychiatry, Moscow, Russia 7/10, Bolshaya Polyanka St, Build. 3, Moscow 119180
Russian Federation


V. B. Vilyanov
Research and Diagnostic Center for Clinical Psychiatry, Moscow, Russia 48, Altufyevskoe Shosse, Build. 1, Moscow 127566
Russian Federation


References

1. Maes M, and Meltzer H. The serotonin hypothesis of major depression. In: Bloom F, Kupfer D, editors. Psychopharmacology. New York: Raven Press; 1995. P. 933-44.

2. Курова НС, Панюшкина СВ. Сравнительный анализ изменения спектральных характеристик ЭЭГ крыс при активации и угнетении катехоламинергических систем. Журнал высшей нервной деятельности. 1992;42(5):965-76. [Kurova NS, Panyushkina SV. Comparative analysis of changes in spectral characteristics of the EEG of rats during activation and inhibition of catecholaminergic systems. Zhurnal vysshei nervnoi deyatel'nosti. 1992;42(5):965-76. (In Russ.)].

3. Петрова ЕА, Брусов ОС, Кичук ИВ. Патогенетические аспекты развития депрессивных и тревожных расстройств у больных с церебральным инсультом. Нервные болезни. 2014;(1):26-31. [Petrova EA, Brusov OS, Kichuk IV. Pathogenetic aspects of the development of depressive and anxiety disorders in patients with cerebral stroke. Nervnye bolezni. 2014;(1):26-31. (In Russ.)].

4. Kabuto H, Yokoi I, MoonSuk S, et al. Effects of kainic acid, quisqualic acid, and their antagonist, pCB-PzDA, on rat electrocorticograms and monoamine metabolite levels in rat striatum. Neurochem Res. 1994 Mar;19(3):267-74.

5. Dringenberg HC, Vanderwolf CH. Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems. Exp Brain Res. 1997 Aug;116(1):160-74.

6. Itil TM., Le Bars P, Eralp E. Quantitative EEG as biological marker. Neuropsychopharmacology. 1994;10:310.

7. Петрова ЕА, Георгиевская НА, Кичук ИВ и др. Биоэлектрическая активность головного мозга при различных аффективных расстройствах у больных с церебральным инсультом. Журнал неврологии и психиатрии им. С.С. Корсакова. 2010;110(6):77-85. [Petrova EA, Georgievskaya NA, Kichuk IV, et al. Bioelectrical brain activity in different affective disorders in patients with cerebral stroke. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2010;110(6):77-85. (In Russ.)].

8. Yamada M, Kimura M, Mori T, Endo S. EEG power and coherence in presenile and senile depression. Characteristic findings related to differences between anxiety type and retardation type. Nihon Ika Daigaku Zasshi. 1995 Apr;62(2):176-85.

9. Кичук ИВ, Петрова ЕА, Георгиевская НА. Изменения биоэлектрической активности головного мозга у больных с постинсультной депрессией и апатией. Неврология, нейропсихиатрия, психосоматика. 2015;7(2):10-5. [Kichuk IV, Petrova EA, Georgievskaya NA. Brain bioelectrical activity changes in patients with poststroke depression and apathy. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2015;7(2):10-5. (In Russ.)]. doi: 10.14412/2074-2711-2015-2-10-15

10. Мельникова ТС, Лапин ИА. Когерентный анализ ЭЭГ при депрессивных расстройствах различного генеза. Социальная и клиническая психиатрия. 2008;(3):27- 32. [Mel'nikova TS, Lapin IA. Coherent analysis of the EEG in depressive disorders of different genesis. Sotsial'naya i klinicheskaya psikhiatriya. 2008;(3):27-32. (In Russ.)].

11. Сысоева ЮЮ. Изучение связи личностной тревожности с электрофизиологическими показателями развития ночного сна. Дисс. канд. биолю наук. Ростов-на-Дону; 2008. 191 с. [Sysoeva YuYu. Exploration of the association of personal anxiety with electrophysiological indicators of the development of a night's sleep. Diss. cand. biol. sci. Rostov-na- Donu; 2008. 191 p.].

12. Тутер НВ, Гнездицкий ВВ. Компрессионно-спектральный анализ ЭЭГ при панических расстройствах, возникающих у пациентов с различными психическими заболеваниями. Журнал неврологии и психиатрии им.С.С. Корсакова. 2005;(3):53-61. [Tuter NV, Gnezditskii VV. Compressive-spectral analysis of EEG in panic disorders, occurring in patients with different mental illnesses. Zhurnal nevrologii i psikhiatrii im.S.S. Korsakova. 2005;(3):53-61. (In Russ.)].

13. Незнамов ГГ, Бочкарев ВК, Сюняков СА. ЭЭГ-анализ тревожных расстройств при пограничных состояниях. Российский психиатрический журнал. 2000;(4): 23-8. [Neznamov GG, Bochkarev VK, Syunyakov SA. EEG-analysis of anxiety disorders in borderline states. Rossiiskii psikhiatricheskii zhurnal. 2000;(4):23-8. (In Russ.)].

14. Афтанс ЛИ, Павлов СВ. Особенности межполушарного распределения спектров мощности ЭЭГ у высокотревожных индивидуумов в эмоционально-нейтральных условиях и при отрицательной эмоциональной активации. Журнал высшей нервной деятельности. 2005;55(3):322-8. [Aftans LI, Pavlov SV. Peculiarities of interhemispheric distribution of power spectrum of EEG in anxious individuals in an emotionally neutral conditions and negative emotional activation. Zhurnal vysshei nervnoi deyatel'nosti. 2005;55(3):322-8. (In Russ.)].

15. Wiedemann K. Biomarkers in development of psychotropic drugs. Dialogues Clin Neurosci. 2011;13(2):225-34.

16. Гордеев СА. Изменение спонтанной и вызванной электрической активности мозга при тревожно-фобических расстройствах. Неврологический Вестник. 2008;XL(1):81-7. [Gordeev SA. The changes of spontaneous and evoked electrical activity of the brain for anxiety and phobic disorders. Nevrologicheskii Vestnik. 2008;XL(1):81-7. (In Russ.)].

17. Demerdzieva A, Pop-Jordanova N. Alpha asymmetry in QEEG recordings in young patients with anxiety. Prilozi. 2011 Jul;32(1):229-44

18. Наследов АД. Математические методы психологического исследования. Санкт- Петербург: Речь; 2006. 388 с. [Nasledov AD. Matematicheskie metody psikhologicheskogo issledovaniya [Mathematical methods of psychological research]. Sankt-Peterburg: Rech'; 2006. 388 p.]

19. Suzuki H, Mori T, Kimura M, Endo S. Quantitative EEG characteristics of the state of depressive phase and the state of remission in major depression. Seishin Shinkeigaku Zasshi. 1996;98(6):363-77.

20. Grin'-Iatsenko VA, Baas I, Ponomarev VA, Kropotov IuD. Analysis of EEG characteristic at early stages of depression using method of independent components. Fiziol Cheloveka. 2011 Jan-Feb;37(1):45-55.

21. Paquette V, Beauregard M, Beaulieu-Prevost D. Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder. Psychiatry Res. 2009 Dec 30;174(3):231-9. doi:10.1016/j.pscychresns.2009.06.002. Epub 2009 Nov 13.

22. Мельникова ТС, Краснов ВН, Лапин ИА. Дневная динамика альфа-ритма на ЭЭГ при эндогенных депрессиях. Журнал неврологии и психиатрии им.С.С. Корсакова. 2011; (8):31-5. [Mel'nikova TS, Krasnov VN, Lapin IA. Diurnal changes of alpha rhythm on the EEG in endogenous depression. Zhurnal nevrologii i psikhiatrii im.S.S. Korsakova. 2011;(8):31-5. (In Russ.)].

23. Lieber AL. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: II. Interhemispheric measures are abnormal in major depressives and frequency analysis may discriminate certain subtypes. Hillside J Clin Psychiatry. 1988;10(1):84-97.

24. McAllister-Williams RH, Alhaj HA, Massey A, et al. Somatodendritic 5- hydroxytryptamine1A (5-HT1A) autoreceptor function in major depression as assessed using the shift in electroencephalographic frequency spectrum with buspirone. Psychol Med. 2014 Mar;44 (4):767-77.

25. Iosifescu DV, Greenwald S, Devlin P, et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharmacol. 2009 Nov;19(11):772-7. doi: 10.1016/j.euroneuro.2009.06.001. Epub 2009 Jul 1.

26. Вильянов ВБ, Соловьева НВ, Кременицкая СА. Эффективность сульпирида у больных с тревожными расстройствами в зависимости от концентрации серотонина в сыворотке крови. Журнал неврологии и психиатрии им. С.С.Корсакова. 2015;115(10): 62-6. [Vil'yanov VB, Solov'eva NV, Kremenitskaya SA. The effectiveness of sulpiride in patients with anxiety disorders, depending on the concentration of serotonin in serum. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2015;115(10):62-6. (In Russ.)].


For citation:


Kichuk I.V., Petrova E.A., Mitrofanov A.A., Solovyeva N.V., Vilyanov V.B. Changes in EEG indices and serotonin concentrations in depression and anxiety disorders. Neurology, Neuropsychiatry, Psychosomatics. 2016;8(3):34-38. (In Russ.) https://doi.org/10.14412/2074-2711-2016-3-34-38

Views: 228


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)