Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Structure of the subarachnoid lymphatic-like membrane as a meningeal selective barrier and immunological regulator

https://doi.org/10.14412/2074-27112025-3-112-119

Abstract

The subarachnoid lymphatic-like membrane (SLYM), identified through neuroimaging and molecular biology, is an extremely thin fourth subarachnoid meningeal layer that envelops blood vessels within the subarachnoid space. It performs critical functions including immune cell regulation, cerebrospinal fluid (CSF) flow modulation, brain protection, and lubrication. All components of the central nervous system (CNS) drainage system – interstitial fluid, perivascular spaces, CSF, meningeal lymphatic vessels, and cervical lymph nodes – operate in close coordination, providing not only waste and toxin removal from the brain, but also maintaining homeostasis essential for normal neuronal function. SLYM, as part of this complex system, plays a role in transporting and filtering cells and molecules, contributing to the regulation of the CNS immune response. It forms a sheath around the brain through which only very small molecules can pass, thereby separating "clean" CSF from "dirty" CSF.

SLYM may be involved in processes associated with neuroinflammation and neurodegenerative diseases, such as Alzheimer’s disease and multiple sclerosis, potentially opening new avenues for treatment and understanding of the mechanisms underlying immune responses in the CNS. The revised understanding of the critical role of the meninges in brain function regulation, their interaction with other drainage system components, and the role of SLYM as a new selective barrier involved in compartmentalizing the subarachnoid space offer a new perspective on neurological disorders and create opportunities for regenerative therapies targeting neurodegenerative diseases.

About the Authors

V. N. Nikolenko
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Vladimir Nikolaevich Nikolenko

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



M. V. Oganesyan
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



K. I. Urazmetova
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



N. A. Rizaeva
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



M. V. Sankova
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



А. V. Moiseeva
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



A. A. Moiseenko
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



A. A. Belichenko
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



A. T. Nikitina
Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

11/10, Mokhovaya St., Moscow 125009


Competing Interests:

There are no conflicts of interest



L. A. Gridin
Moscow Center for Health Problems under the Moscow Government
Russian Federation

14/3, Zhitnaya St., 14/3 Moscow 119049


Competing Interests:

There are no conflicts of interest



References

1. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021 Apr 24;397(10284):1577-90. doi: 10.1016/S01406736(20)32205-4. Epub 2021 Mar 2.

2. 2023 Alzheimer's disease facts and figures. Alzheimers Dement. 2023 Apr;19(4):1598-695. doi: 10.1002/alz.13016. Epub 2023 Mar 14.

3. Key A, Retzius G. Studien in der Anatomie des Nervensystems und des Bindegewebes. Vol. 1. Stockholm: Samson & Wallin; 1875.

4. Millen JW, Woollam DH. On the nature of the pia mater. Brain. 1961 Sep;84:514-20. doi: 10.1093/brain/84.3.514

5. Nicholas DS, Weller RO. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg. 1988 Aug;69(2):276-82. doi: 10.3171/jns.1988.69.2.0276

6. Krisch B, Leonhardt H, Oksche A. The meningeal compartments of the median eminence and the cortex. A comparative analysis in the rat. Cell Tissue Res. 1983;228(3):597640. doi: 10.1007/BF00211479

7. Krisch B, Leonhardt H, Oksche A. Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 1984;238(3):459-74. doi: 10.1007/BF00219861

8. Angelov DN, Vasilev VA. Morphogenesis of rat cranial meninges. A light- and electronmicroscopic study. Cell Tissue Res. 1989 Jul;257(1):207-16. doi: 10.1007/BF00221652

9. Mestre H, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies. Trends Neurosci. 2020 Jul;43(7):458-66. doi: 10.1016/j.tins.2020.04.003. Epub 2020 May 15.

10. Mestre H, Kostrikov S, Mehta RI,Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond). 2017 Aug 10;131(17):2257-74. doi: 10.1042/CS20160381

11. Kumar A, Kumar R, Narayan RK, et al.Anatomical correlates for the newly discovered meningeal layer in the existing literature: A systematic review. Anat Rec (Hoboken). 2025 Jan;308(1):191-210. doi: 10.1002/ar.25524. Epub 2024 Jun 26.

12. O’Rahilly R, Müller F. The meninges in human development. J Neuropathol Exp Neurol. 1986 Sep;45(5):588-608. doi: 10.1097/00005072-198609000-00009

13. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Larsen's human embryology. 6th ed. London: Elsevier Health Sciences; 2021.

14. Dasgupta K, Jeong J. Developmental biology of the meninges. Genesis. 2019 May;57(5):e23288. doi: 10.1002/dvg.23288. Epub 2019 Mar 13.

15. Batarfi M, Valasek P, Krejci E, et al. The development and origins of vertebrate meninges. Biol Commun. 2017;62(2):73-81. doi: 10.21638/11701/spbu03.2017.203

16. Danielian PS, Muccino D, Rowitch DH, et al. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998 Dec 3;8(24):1323-6. doi: 10.1016/s09609822(07)00562-3

17. Jiang X, Iseki S, Maxson RE, et al. Tissueorigins and interactions in the mammalian skull vault. Dev Biol. 2002 Jan 1;241(1):106-16. doi: 10.1006/dbio.2001.0487

18. Yoshida T, Vivatbutsiri P, Morriss-Kay G, et al. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev. 2008 Sep-Oct;125(910):797-808. doi: 10.1016/j.mod.2008.06.007. Epub 2008 Jun 20.

19. Tani S, Chung UI, Ohba S, Hojo H. Understanding paraxial mesoderm development and sclerotome specification for skeletal repair. Exp Mol Med. 2020 Aug;52(8):1166-77. doi: 10.1038/s12276-020-0482-1. Epub 2020 Aug 13.

20. Pla V, Bitsika S, Giannetto MJ, et al.Structural characterization of SLYM – a 4th meningeal membrane. Fluids Barriers CNS. 2023 Dec 14;20(1):93. doi: 10.1186/s12987023-00500-w

21. Mollgard K, Beinlich FRM, Kusk P, et al. A mesothelium divides the subarachnoid space into functional compartments. Science. 2023 Jan 6;379(6627):84-8. doi: 10.1126/science.adc8810. Epub 2023 Jan 5.

22. Kothur K, Wienholt L, Brilot F, Dale RC.CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine. 2016 Jan;77:227-37. doi: 10.1016/j.cyto.2015.10.001. Epub 2015 Oct 14.

23. Benias PC, Wells RG, Sackey-Aboagye B,et al. Structure and Distribution of an Unrecognized Interstitium in Human Tissues. Sci Rep. 2018;8(1):4947. doi: 10.1038/s41598-018-23062-6. Erratum in: Sci Rep. 2020;10(1):3324. doi: 10.1038/s41598-020-58958-9

24. Louveau A, Filiano AJ, Kipnis J. Meningealwhole mount preparation and characterization of neural cells by flow cytometry. Curr Protoc Immunol. 2018 Apr;121(1):e50. doi: 10.1002/cpim.50. Epub 2018 Apr 16.

25. Linnerbauer M, Wheeler MA, Quintana FJ.Astrocyte Crosstalk in CNS Inflammation. Neuron. 2020 Nov 25;108(4):608-22. doi: 10.1016/j.neuron.2020.08.012. Epub 2020 Sep 7.

26. Natale G, Limanaqi F, Busceti CL, et al.Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci. 2021 Feb 9;15:639140. doi: 10.3389/fnins.2021.639140

27. Jessen NA, Munk AS, Lundgaard I,Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res. 2015 Dec;40(12):2583-99. doi: 10.1007/s11064-0151581-6. Epub 2015 May 7.

28. Bohr T, Hjorth PG, Holst SC, et al. The glymphatic system: Current understanding and modeling. iScience. 2022 Aug 20;25(9):104987. doi: 10.1016/j.isci.2022.104987

29. Virchow R. Ueber die Erweiterung kleinererGefässe. Arch Pathol Anat Physiol Klin Med. 1851;3:427-62.

30. Robin C. Recherches sur quelques particularitеs de la structure des capillaires de l'encеphale. J Physiol Homme Anim. 1859;2:537-48.

31. Nakada T. Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J. 2014 Aug 28;55(4):328-36. doi: 10.3325/cmj.2014.55.328

32. Semyachkina-Glushkovskaya OV. The lymphatic system in the brain membranes: new discoveries in neurophysiology. Sibirskoye meditsinskoye obozreniye = Siberian Medical Review. 2017;(6):5-12 (In Russ.)].

33. Nikolenko VN, Oganesyan MV, Vovkogon AD, et al. Current Understanding of Central Nervous System Drainage Systems: Implications in the Context of Neurodegenerative Diseases. Curr Neuropharmacol. 2020;18(11):1054-63. doi: 10.2174/1570159X17666191113103850

34. Hablitz LM, Nedergaard M.The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021 Sep 15;41(37):7698-711. doi: 10.1523/JNEUROSCI.0619-21.2021

35. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid? Sci Transl Med. 2012 Aug 15;4(147):147ra111. doi: 10.1126/scitranslmed.3003748

36. Iliff JJ, Chen MJ, Plog BA, et al.Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014 Dec 3;34(49):16180-93. doi: 10.1523/JNEUROSCI.3020-14.2014

37. Patel TK, Habimana-Griffin L, Gao X, et al.Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol Neurodegener. 2019 Feb 27;14(1):11. doi: 10.1186/s13024-019-0312-x

38. Xie L, Kang H, Xu Q, et al. Sleep drivesmetabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224

39. Eide PK, Vinje V, Pripp AH, et al. Sleepdeprivation impairs molecular clearance from the human brain. Brain. 2021 Apr 12;144(3):863-74. doi: 10.1093/brain/awaa443

40. Eide PK, Ringstad G. Cerebrospinal fluidegress to human parasagittal dura and the impact of sleep deprivation. Brain Res. 2021 Dec 1;1772:147669. doi: 10.1016/j.brainres.2021.147669. Epub 2021 Sep 26.

41. Rennels ML, Blaumanis OR, Grady PA.Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990;52:431-9.

42. Annadurai N, De Sanctis JB, Hajduch M,Das V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer's disease and other tauopathies. Exp Neurol. 2021 Sep;343:113756. doi: 10.1016/j.expneurol.2021.113756. Epub 2021 May 12.

43. Goedert M, Eisenberg DS, Crowther RA.Propagation of Tau Aggregates and Neurodegeneration. Annu Rev Neurosci. 2017 Jul 25;40:189-210. doi: 10.1146/annurevneuro-072116-031153

44. Dreha-Kulaczewski S, Joseph AA, Merboldt KD, et al. Inspiration is the major regulator of human CSF flow. J Neurosci. 2015 Feb 11;35(6):2485-91. doi: 10.1523/JNEUROSCI.3246-14.2015

45. Dreha-Kulaczewski S, Joseph AA,Merboldt KD, et al. Identification of the Upward Movement of Human CSF In Vivo and its Relation to the Brain Venous System. J Neurosci. 2017 Mar 1;37(9):2395-402. doi: 10.1523/JNEUROSCI.2754-16.2017. Epub 2017 Jan 30.

46. Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell. 2021 Feb 22;56(4):406-26. doi: 10.1016/j.devcel.2021.01.018

47. Mathiesen BK, Miyakoshi LM, Cederroth CR, et al. Delivery of gene therapy through a cerebrospinal fluid conduit to rescue hearing in adult mice. Sci Transl Med. 2023 Jun 28;15(702):eabq3916. doi: 10.1126/scitranslmed.abq3916. Epub 2023 Jun 28.

48. Hills BA, Burke JR, Thomas K. Surfactantbarrier lining peritoneal mesothelium: lubricant and release agent. Perit Dial Int. 1998 MarApr;18(2):157-65. doi: 10.1177/089686089801800203

49. Mutsaers SE, Pixley FJ, Prele CM, Hoyne GF. Mesothelial cells regulate immune responses in health and disease: role for immunotherapy in malignant mesothelioma. Curr Opin Immunol. 2020 Jun;64:88-109. doi: 10.1016/j.coi.2020.04.005. Epub 2020 May 30.

50. Merlini A, Haberl M, Strauss J, et al.Distinct roles of the meningeal layers in CNS autoimmunity. Nat Neurosci. 2022 Jul;25(7):887-99. doi: 10.1038/s41593-02201108-3. Epub 2022 Jun 30.

51. Nabeshima S, Reese TS, Landis DM,Brightman MW. Junctions in the meninges and marginal glia. J Comp Neurol. 1975 Nov 15;164(2):127-69. doi: 10.1002/cne.901640202

52. Orlin JR, Osen KK, Hovig T.Subdural compartment in pig: a morphologic study with blood and horseradish peroxidase infused subdurally. Anat Rec. 1991 May;230(1):22-37. doi: 10.1002/ar.1092300104

53. Grubb S. Ultrastructure of the brain waste-clearance pathway. bioRxiv. 2023:2023:04.14.536712. doi: 10.1101/2023.04.14.536712

54. Mapunda JA, Pareja J, Vladymyrov M, et al. VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation. Nat Commun. 2023 Sep 20;14(1):5837. doi: 10.1038/s41467-023-41580-4

55. Al Barashdi MA, Ali A, McMullin MF,Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol. 2021 Sep;74(9):548-52. doi: 10.1136/jclinpath-2020206927. Epub 2021 May 26.

56. Rustenhoven J, Drieu A, Mamuladze T, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021 Feb 18;184(4):1000-16.e27. doi: 10.1016/j.cell.2020.12.040. Epub 2021 Jan 27.

57. Brioschi S, Wang WL, Peng V, et al.Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science. 2021 Jul 23;373(6553):eabf9277. doi: 10.1126/science.abf9277. Epub 2021 Jun 3.

58. Mohamed AZ, Cumming P, Götz J, Nasrallah F; Department of Defense Alzheimer’s Disease Neuroimaging Initiative. Tauopathy in veterans with long-term posttraumatic stress disorder and traumatic brain injury. Eur J Nucl Med Mol Imaging. 2019 May;46(5):1139-51. doi: 10.1007/s00259-0184241-7. Epub 2019 Jan 7.

59. Flatt JD, Gilsanz P, Quesenberry CP Jr, et al. Post-traumatic stress disorder and risk of dementia among members of a health care delivery system. Alzheimers Dement. 2018 Jan;14(1):28-34. doi: 10.1016/j.jalz.2017.04.014. Epub 2017 Jun 13.

60. Tsuchiya K, Suzuki Y, Yoshimura K, et al. Macrophage Mannose Receptor CD206 Predicts Prognosis in Community-acquired Pneumonia. Sci Rep. 2019;9(1):18750. doi: 10.1038/s41598-019-55289-2. Erratum in: Sci Rep. 2020;10(1):3324. doi: 10.1038/s41598020-58958-9


Review

For citations:


Nikolenko VN, Oganesyan MV, Urazmetova KI, Rizaeva NA, Sankova MV, Moiseeva АV, Moiseenko AA, Belichenko AA, Nikitina AT, Gridin LA. Structure of the subarachnoid lymphatic-like membrane as a meningeal selective barrier and immunological regulator. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2025;17(3):112-119. (In Russ.) https://doi.org/10.14412/2074-27112025-3-112-119

Views: 148


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)