Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Management tactics in patients with chronic cerebral ischemia during COVID-19 pandemic

Full Text:


The article describes the current state of evidence of hypertension and diabetes mellitus roles in the pathophysiology of chronic cerebral ischemia (CCI). CCI is mediated by cerebral microangiopathy, which develops due to vascular remodeling, increased arterial stiffness, endothelial dysfunction, impaired cerebrovascular reactivity, and neuroinflammation. All those mechanisms lead to white matter lesions and cognitive impairment. Arteriolosclerosis is the primary morphological process that damages perforating arteries and arterioles. COVID-19 pandemic can modify CCI progression due to similar pathophysiology. In particular, COVID-19-associated coagulopathy can lead to silent lacunar infarctions and lacunar stroke development. Treatment features of patients with CCI during the COVID-19 pandemic are reviewed. It is concluded that special attention in this group of patients should be paid to primary and secondary cardiovascular prevention issues, an essential element of which is the use of dipyridamole since it has a pleiotropic effect.

About the Author

A. A. Kulesh
Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
Russian Federation

Aleksey Aleksandrovich Kulesh

Department of neurology and medical genetics

26, Petropavlovskaya St., Perm 614990


1. Parfenov VA. Vascular cognitive impairment and chronic cerebral ischemia (dyscirculatory encephalopathy). Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(Suppl. 3):61-7. doi: 10.14412/2074-2711-2019-3S-61-67

2. Kulesh AA, Emelin AYu, Bogolepova AN, et al. Clinical manifestations and issues of diagnosis of chronic cerebrovascular disease (chronic cerebral ischemia) at an early (pre-dementia) stage. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):4-12. doi: 10.14412/2074-2711-2021-1-4-12 (In Russ.).

3. Iadecola C, Duering M, Hachinski V, et al. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019 Jul 2;73(25):3326-44. doi: 10.1016/j.jacc.2019.04.034

4. Kulesh AA, Drobakha VE, Shestakov VV. Cerebral small vessel disease: classification, clinical manifestations, diagnosis, and features of treatment. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(Suppl. 3):4-17. doi: 10.14412/2074-2711-2019-3S-4-17 (In Russ.).

5. Dichgans M, Leys D. Vascular Cognitive Impairment. Circ Res. 2017 Feb 3;120(3):573- 91. doi: 10.1161/CIRCRESAHA.116.308426

6. Novosadova OA, Kulesh AA, Grigor'yeva VN. Diagnostics of cerebral amyloid angiopathy: the way to Boston criteria 2.0. Rossiyskiy nevrologicheskiy zhurnal. 2020;25(5):4-13 (In Russ.).

7. Danchenko IYu, Kulesh AA, Drobakha VE, et al. CADASIL syndrome: differential diagnosis with multiple sclerosis. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019;119(10- 2):128-36. doi: 10.17116/jnevro201911910128 (In Russ.).

8. Kulesh AA, Drobakha VE, Shestakov VV. Sporadic cerebral non-amyloid microangiopathy: pathogenesis, diagnosis, and features of treatment policy. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4):13- 22. doi: 10.14412/2074-2711-2018-4-13-22 (In Russ.).

9. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684-96. doi: 10.1016/S1474-4422(19)30079-1

10. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration: a united approach. Lancet Neurol. 2013;12:822-38. doi: 10.1016/S1474-4422(13)70124-8

11. Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013 Jun 15;304(12):H1598-614. doi: 10.1152/ajpheart.00490.2012. Epub 2013 Apr

12. Hu X, De Silva TM, Chen J, Faraci FM. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res. 2017 Feb 3;120(3):449-71. doi: 10.1161/CIRCRESAHA.116.308427

13. Kelly DM, Rothwell PM. Blood pressure and the brain: the neurology of hypertension. Pract Neurol. 2020 Apr;20(2):100-8. doi: 10.1136/practneurol-2019-002269. Epub 2019 Sep 26.

14. Benetos A, Adamopoulos C, Bureau JM, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002 Mar 12;105(10):1202-7. doi: 10.1161/hc1002.105135

15. Webb AJ, Simoni M, Mazzucco S, et al. Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke. 2012 Oct;43(10):2631-6. doi: 10.1161/STROKEAHA.112.655837. Epub 2012 Aug 23.

16. Rothwell PM, Howard SC, Dolan E, et al.; ASCOT-BPLA and MRC Trial Investigators. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010 May;9(5):469-80. doi: 10.1016/S1474-4422(10)70066-1. Epub 2010 Mar 11.

17. Iadecola C, Gottesman RF. Neurovascular and Cognitive Dysfunction in Hypertension. Circ Res. 2019 Mar 29;124(7):1025-44. doi: 10.1161/CIRCRESAHA.118.313260

18. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017 Sep 27;96(1):17-42. doi: 10.1016/j.neuron.2017.07.030

19. Blanco PJ, Müller LO, Spence JD. Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol. 2017 Jun 8;2(3):108-17. doi: 10.1136/svn-2017-000087. eCollection 2017 Sep.

20. Brown R, Benveniste H, Black SE, et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res. 2018 Sep 1;114(11):1462-73. doi: 10.1093/cvr/cvy113

21. Marinkovic S, Milisavljevic M, Puskas L. Microvascular anatomy of the hippocampal formation. Surg Neurol. 1992 May;37(5):339- 49. doi: 10.1016/0090-3019(92)90001-4

22. Wardlaw JM, Makin SJ, Valdes Hernandez MC, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimers Dement. 2017;13:634-43. doi: 10.1016/j.jalz.2016.09.006

23. Sam K, Crawley AP, Conklin J, et al. Development of white matter hyperintensity is preceded by reduced cerebrovascular reactivity. Ann Neurol. 2016 Aug;80(2):277-85. doi: 10.1002/ana.24712

24. Shi Y, Thrippleton MJ, Blair GW, et al. Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J Cereb Blood Flow Metab. 2020 Jan;40(1):85-99. doi: 10.1177/0271678X18803956. Epub 2018 Oct 8.

25. De Guio F, Mangin JF, Duering M, et al. White matter edema at the early stage of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2015 Jan;46(1):258-61. doi: 10.1161/STROKEAHA.114.007018. Epub 2014 Nov 4.

26. Rost NS, Cougo P, Lorenzano S, et al. Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J Cereb Blood Flow Metab. 2018 Jan;38(1):75-86. doi: 10.1177/0271678X17706449. Epub 2017 May 8.

27. Peres R, De Guio F, Chabriat H, Jouvent E. Alterations of the cerebral cortex in sporadic small vessel disease: a systematic review of in vivo MRI data. J Cereb Blood Flow Metab. 2016 Apr;36(4):681-95. doi: 10.1177/0271678X15625352. Epub 2016 Jan 19.

28. Lyu F, Wu D, Wei C, Wu A. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sci. 2020 Aug 1;254:117771. doi: 10.1016/j.lfs.2020.117771. Epub 2020 May 11.

29. Liu J, Rutten-Jacobs L, Liu M, et al. Causal Impact of Type 2 Diabetes Mellitus on Cerebral Small Vessel Disease: A Mendelian Randomization Analysis. Stroke. 2018 Jun;49(6):1325-31. doi: 10.1161/STROKEAHA.117.020536. Epub 2018 Apr 23.

30. Rensma SP, van Sloten TT, Ding J, et al. Type 2 Diabetes, Change in Depressive Symptoms Over Time, and Cerebral Small Vessel Disease: Longitudinal Data of the AGES-Reykjavik Study. Diabetes Care. 2020 Aug;43(8):1781-7. doi: 10.2337/dc19-2437. Epub 2020 Jun 11.

31. Umemura T, Kawamura T. Retinopathy: A sign of cerebral small vessel disease in diabetes? J Diabetes Investig. 2017 Jul;8(4):428-30. doi: 10.1111/jdi.12602. Epub 2017 Jan 17.

32. Sanahuja J, Alonso N, Diez J, et al. Increased Burden of Cerebral Small Vessel Disease in Patients With Type 2 Diabetes and Retinopathy. Diabetes Care. 2016 Sep;39(9):1614-20. doi: 10.2337/dc15-2671. Epub 2016 Jun 8.

33. Blevins BL, Vinters HV, Love S, et al. Brain arteriolosclerosis. Acta Neuropathol. 2021 Jan;141(1):1-24. doi: 10.1007/s00401-020-02235-6. Epub 2020 Oct 24.

34. Feinkohl I, Janke J, Hadzidiakos D, et al. Associations of the metabolic syndrome and its components with cognitive impairment in older adults. BMC Geriatr. 2019 Mar 7;19(1):77. doi: 10.1186/s12877-019-1073-7

35. Agmon Y, Khandheria BK, Meissner I, et al. Independent association of high blood pressure and aortic atherosclerosis: a population-based study. Circulation. 2000 Oct 24;102(17):2087-93. doi: 10.1161/01.cir.102.17.2087

36. Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet. 2014 Mar 15;383(9921):984- 98. doi: 10.1016/S0140-6736(13)61088-0. Epub 2013 Sep 2.

37. Moroni F, Ammirati E, Rocca MA, et al. Cardiovascular disease and brain health: Focus on white matter hyperintensities. Int J Cardiol Heart Vasc. 2018 May 14;19:63-9. doi: 10.1016/j.ijcha.2018.04.006. eCollection 2018 Jun.

38. Galan M, Jimenez-Altayo F. Small Resistance Artery Disease and ACE2 in Hypertension: A New Paradigm in the Context of COVID-19. Front Cardiovasc Med. 2020 Oct 30;7:588692. doi: 10.3389/fcvm.2020.588692. eCollection 2020.

39. Spence JD, de Freitas GR, Pettigrew LC, et al. Mechanisms of Stroke in COVID-19. Cerebrovasc Dis. 2020;49(4):451-8. doi: 10.1159/000509581. Epub 2020 Jul 20.

40. Hess DC, Eldahshan W, Rutkowski E. COVID-19-Related Stroke. Transl Stroke Res. 2020 Jun;11(3):322-5. doi: 10.1007/s12975-020-00818-9. Epub 2020 May 7.

41. Tsivgoulis G, Palaiodimou L, Zand R, et al. COVID-19 and cerebrovascular diseases: a comprehensive overview. Ther Adv Neurol Disord. 2020 Dec 8;13:1756286420978004. doi: 10.1177/1756286420978004. eCollection 2020.

42. Szegedi I, Orban-Kalmandi R, Csiba L, Bagoly Z. Stroke as a Potential Complication of COVID-19-Associated Coagulopathy: A Narrative and Systematic Review of the Literature. J Clin Med. 2020 Sep 28;9(10):3137. doi: 10.3390/jcm9103137

43. Jayarangaiah A, Kariyanna PT, Chen X, et al. COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clin Appl Thromb Hemost. Jan-Dec 2020;26:1076029620943293. doi: 10.1177/1076029620943293

44. Geddings JE, Mackman N. New players in haemostasis and thrombosis. Thromb Haemost. 2014 Apr 1;111(4):570-4. doi: 10.1160/TH13-10-0812. Epub 2014 Feb 27.

45. Fuchs TA, Kremer Hovinga JA, Schatzberg D, et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012 Aug 9;120(6):1157-64. doi: 10.1182/blood-2012-02-412197. Epub 2012 May 18.

46. Diaz JA, Fuchs TA, Jackson TO, et al. Plasma DNA is Elevated in Patients with Deep Vein Thrombosis. J Vasc Surg Ven Lymph Dis. 2013 Oct 1;1(4):341-348.e1. doi: 10.1016/j.jvsv.2012.12.002

47. Van Montfoort ML, Stephan F, Lauw MN, et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):147-51. doi: 10.1161/ATVBAHA.112.300498. Epub 2012 Oct 25.

48. Ali RA, Gandhi AA, Meng H, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun. 2019 Apr 23;10(1):1916. doi: 10.1038/s41467-019-09801-x

49. Crippa S, Kägi G, Graf L, et al. Stroke in a young adult with mild COVID-19 suggesting endotheliitis. New Microbes New Infect. 2020 Nov;38:100781. doi: 10.1016/j.nmni.2020.100781. Epub 2020 Oct 10.

50. Keller E, Brandi G, Winklhofer S, et al. Large and Small Cerebral Vessel Involvement in Severe COVID-19: Detailed Clinical Workup of a Case Series. Stroke. 2020 Dec;51(12):3719- 22. doi: 10.1161/STROKEAHA.120.031224. Epub 2020 Oct 15.

51. Rothstein A, Oldridge O, Schwennesen H, et al. Acute Cerebrovascular Events in Hospitalized COVID-19 Patients. Stroke. 2020 Sep;51(9):e219-e222. doi: 10.1161/STROKEAHA.120.030995. Epub 2020 Jul 20.

52. Yaghi S, Ishida K, Torres J, et al. SARSCoV-2 and Stroke in a New York Healthcare System. Stroke. 2020 Jul;51(7):2002-11. doi: 10.1161/STROKEAHA.120.030335. Epub 2020 May 20.

53. Tan YK, Goh C, Leow AST, et al. COVID-19 and ischemic stroke: a systematic review and meta-summary of the literature. J Thromb Thrombolysis. 2020 Oct;50(3):587-95. doi: 10.1007/s11239-020-02228-y

54. Vogrig A, Gigli GL, Bna C, Morassi M. Stroke in patients with COVID-19: Clinical and neuroimaging characteristics. Neurosci Lett. 2021 Jan 19;743:135564. doi: 10.1016/j.neulet.2020.135564. Epub 2020 Dec 19.

55. Pellegrini D, Kawakami R, Guagliumi G, et al. Microthrombi as a Major Cause of Cardiac Injury in COVID-19: A Pathologic Study. Circulation. 2021 Mar 9;143(10):1031-42. doi: 10.1161/CIRCULATIONAHA.120.051828. Epub 2021 Jan 22.

56. Bois MC, Boire NA, Layman AJ, et al. COVID-19-Associated Nonocclusive Fibrin Microthrombi in the Heart. Circulation. 2021 Jan 19;143(3):230-43. doi: 10.1161/CIRCULATIONAHA.120.050754. Epub 2020 Nov 16.

57. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020 Nov 18;12(570):eabd3876. doi: 10.1126/scitranslmed.abd3876. Epub 2020 Nov 2.

58. Elshereye A, Erdinc B. Multiple Lacunar Cerebral Infarcts as the Initial Presentation of COVID-19. Cureus. 2020 Aug 10;12(8):e9638. doi: 10.7759/cureus.9638

59. Regenhardt RW, Das AS, Ohtomo R, et al. Pathophysiology of Lacunar Stroke: History's Mysteries and Modern Interpretations. J Stroke Cerebrovasc Dis. 2019 Aug;28(8):2079-97. doi: 10.1016/j.jstrokecerebrovasdis.2019.05.006. Epub 2019 May 28.

60. Giacomozzi S, Caso V, Agnelli G, et al. Lacunar stroke syndromes as predictors of lacunar and non-lacunar infarcts on neuroimaging: a hospital-based study. Intern Emerg Med. 2020 Apr;15(3):429-36. doi: 10.1007/s11739-019-02193-2. Epub 2019 Sep 18.

61. Ay H, Benner T, Arsava EM, et al. A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System. Stroke. 2007 Nov;38(11):2979-84. doi: 10.1161/STROKEAHA.107.490896. Epub 2007 Sep 27.

62. Naganuma M, Inatomi Y, Nakajima M, et al. Is the Occlusion Site of the Lenticulostriate Artery Identified on Admission Related to Clinical Prognosis in Patients with Lacunar Stroke? J Stroke Cerebrovasc Dis. 2018 Jul;27(7):2035-42. doi: 10.1016/j.jstrokecerebrovasdis.2018.02.058. Epub 2018 Apr 17.

63. Kamo H, Miyamoto N, Otani H, et al. The Importance of Combined Antithrombotic Treatment for Capsular Warning Syndrome. J Stroke Cerebrovasc Dis. 2018 Nov;27(11):3095-9. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.038. Epub 2018 Aug 2.

64. Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in Understanding the Pathophysiology of Lacunar Stroke: A Review. JAMA Neurol. 2018 Oct 1;75(10):1273- 81. doi: 10.1001/jamaneurol.2018.1073

65. Williamson JD, Pajewski NM, Auchus AP, et al., for the SPRINT MIND Investigators for the SPRINT Research Group. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA. 2019 Feb 12;321(6):553-61. doi: 10.1001/jama.2018.21442

66. Tzourio C, Anderson C, Chapman N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003 May 12;163(9):1069-75. doi: 10.1001/archinte.163.9.1069

67. Ostroumova OD, Parfenov VA, Ostroumova TM, et al. Expert consensus. Effect ofantihypertensive therapy on cognitive functions. Sistemnyye gipertenzii = Systemic Hypertension. 2021;18(1):5-12. doi: 10.26442/2075082X.2021.1.200575 (In Russ.).

68. Van der Flier WM, Skoog I, Schneider JA, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018 Feb 15;4:18003. doi: 10.1038/nrdp.2018.3

69. Kernan WN, Ovbiagele B, Black HR, et al.; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014 Jul;45(7):2160-236. doi: 10.1161/STR.0000000000000024. Epub 2014 May 1.

70. Fonseca AC, Merwick A, Dennis M, et al. European Stroke Organisation (ESO) guidelines on management of transient ischaemic attack. Eur Stroke J. 2021 Mar;6(1):I-LXII. doi: 10.1177/2396987321989865. Epub 2021 Feb 19.

71. The European Stroke Prevention Study (ESPS). Principal end-points. The ESPS Group. Lancet. 1987 Dec 12;2(8572):1351-4.

72. Diener HC, Cunha L, Forbes C, et al. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci. 1996 Nov;143(1-2):1-13. doi: 10.1016/s0022-510x(96)00308-5

73. Weinberger J. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Curr Cardiol Rep. 2007 Mar;9(1):5-6.

74. Sacco RL, Diener HC, Yusuf S, et al.; PRoFESS Study Group. Aspirin and extendedrelease dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med. 2008 Sep 18;359(12):1238-51. doi: 10.1056/NEJMoa0805002. Epub 2008 Aug 27.

75. Goloveva AG, Zakharov VV. The etiology, manifestations, and therapy of chronic cerebrovascular diseases. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020;12(5):84- 91. doi: 10.14412/2074-2711-2020-5-84-91 (In Russ.).

76. Kim HH, Liao JK. Translational therapeutics of dipyridamole. Arterioscler Thromb Vasc Biol. 2008 Mar;28(3):s39-42. doi: 10.1161/ATVBAHA.107.160226. Epub 2008 Jan 3.

77. Yip S, Benavente O. Antiplatelet agents for stroke prevention. Neurotherapeutics. 2011 Jul;8(3):475-87. doi: 10.1007/s13311-011-0060-2

78. Balakumar P, Nyo YH, Renushia R, et al. Classical and pleiotropic actions of dipyridamole: Not enough light to illuminate the dark tunnel? Pharmacol Res. 2014 Sep;87:144-50. doi: 10.1016/j.phrs.2014.05.008. Epub 2014 May 24.

79. Liu X, Li Z, Liu S, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B. 2020 Jul;10(7):1205-15. doi: 10.1016/j.apsb.2020.04.008. Epub 2020 Apr 20.

80. Kareva EN. Features of the pharmacological actions and the use of dipyridamole in the prevention and treatment of viral infections. Consilium Medicum. 2016;18(12):80-7 (In Russ.).


For citation:

Kulesh A.A. Management tactics in patients with chronic cerebral ischemia during COVID-19 pandemic. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(3):4-11.

Views: 196

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)