Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Cognitive impairment in COVID-19: associations, pathogenesis and treatment questions

https://doi.org/10.14412/2074-2711-2021-2-123-129

Abstract

 Cognitive impairment (CI) can be neurological symptoms or complications of coronavirus disease 2019 (COVID-19). Among  the pathogenetic mechanisms, the neurotropicity of the SARS- CoV-2 virus, endothelial dysfunction, coagulopathy, thrombus  formation, systemic inflammatory reaction, the consequences of mechanical ventilation and drug sedation are considered. Treatment strategies  for COVID-19 patients with CI have not yet been developed. The following tactics of patient management is advisable: prevention of  re-infection, assessment and correction of the emotional state,  treatment of cardiovascular diseases. The possibilities of  vinpocetine in the treatment of CI after COVID-19 are discussed. 

About the Authors

V. A. Golovacheva
Department of Nervous System Diseases and Neurosurgery, N.V. Sklifosovsky Clinical Medicine Institute
Russian Federation

 8, Trubetskaya Str., Build. 2, Moscow 119991, Russia 



G. R. Tabeeva
Department of Nervous System Diseases and Neurosurgery, N.V. Sklifosovsky Clinical Medicine Institute
Russian Federation

 8, Trubetskaya Str., Build. 2, Moscow 119991, Russia 



I. V. Kuznetsov
University Hospital №3, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

 8, Trubetskaya Str., Build. 2, Moscow 119991, Russia 



References

1. Alonso-Lana S, Marquie M, Ruiz A, Boada M. Cognitive and Neuropsychiatric Manifestations of COVID-19 and Effects on Elderly Individuals With Dementia. Front Aging Neurosci. 2020 Oct 26;12:588872. doi: 10.3389/fnagi.2020.588872

2. World Health Organization (2020). Coronavirus Disease (COVID-19) Situation Report-190. Available from: https://www.who.int/docs/default- source/coronaviruse/situation- reports/20200928-weekly-epi-update.pdf?sfvrsn= 9e354665_6 (accessed Sep 28, 2020).

3. Boutoleau-Bretonniere C, Pouclet-Courtemanche H, Gillet A, et al. The Effects of Confinement on Neuropsychiatric Symptoms in Alzheimer's Disease During the COVID-19 Crisis. J Alzheimers Dis. 2020;76(1):41-7. doi: 10.3233/JAD-200604

4. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239-42. doi: 10.1001/jama.2020.2648

5. Tsai ST, Lu MK, San S, Tsai CH. The Neurologic Manifestations of Coronavirus Disease 2019 Pandemic: A Systemic Review. Front Neurol. 2020 May 19;11:498. doi: 10.3389/fneur.2020.00498

6. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020 Sep;19(9):767-83. doi: 10.1016/S1474-4422(20)30221-0

7. Pinzon RT, Wijaya VO, Buana RB, et al. Neurologic Characteristics in Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. Front Neurol. 2020 May 29;11:565. doi: 10.3389/fneur.2020.00565

8. Martin-Sanchez FJ, Del Toro E, Cardassay E, et al. Clinical presentation and outcome across age categories among patients with COVID-19 admitted to a Spanish Emergency Department. Eur Geriatr Med. 2020 Oct;11(5):829-41. doi: 10.1007/s41999-020-00359-2. Epub 2020 Jul 16.

9. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using Open SAFELY. Nature. 2020 Aug;584(7821):430-6. doi: 10.1038/s41586-020-2521-4. Epub 2020 Jul 8.

10. Lam MH, Wing YK, Yu MW, et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med. 2009 Dec 14;169(22):2142-7. doi: 10.1001/archinternmed.2009.384

11. Dinakaran D, Manjunatha N, Naveen Kumar C, Suresh BM. Neuropsychiatric aspects of COVID-19 pandemic: A selective review. Asian J Psychiatr. 2020 Oct;53:102188. doi: 10.1016/j.ajp.2020.102188

12. Barberger-Gateau P, Fabrigoule C. Disability and cognitive impairment in the elderly. Disabil Rehabil. 1997 May;19(5):175-93. doi: 10.3109/09638289709166525

13. Batty GD, Deary IJ, Luciano M, et al. Psychosocial factors and hospitalisations for COVID-19: Prospective cohort study based on a community sample. Brain Behav Immun. 2020 Oct;89:569-78. doi: 10.1016/j.bbi.2020.06.021

14. Bianchetti A, Rozzini R, Guerini F, et al. Clinical Presentation of COVID19 in Dementia Patients. J Nutr Health Aging. 2020;24(6):560-2. doi: 10.1007/s12603-020-1389-1

15. Isaia G, Marinello R, Tibaldi V, et al. Atypical Presentation of Covid-19 in an Older Adult With Severe Alzheimer Disease. Am J Geriatr Psychiatry. 2020 Jul;28(7):790-1. doi: 10.1016/j.jagp.2020.04.018

16. Ward CF, Figiel GS, McDonald WM. Altered Mental Status as a Novel Initial Clinical Presentation for COVID-19 Infection in the Elderly. Am J Geriatr Psychiatry. 2020 Aug;28(8):808-11. doi: 10.1016/j.jagp.2020.05.013

17. Parfenov VA. Distsirkulyatornaya entsefalopatiya i sosudistyye kognitivnyye rasstroystva [Dyscirculatory encephalopathy and vascular cognitive disorders.]. Moscow: IMA-PRESS; 2017. 128 p. (In Russ.).

18. Pinna P, Grewal P, Hall JP, et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J Neurol Sci. 2020 Aug 15;415:116969. doi: 10.1016/j.jns.2020.116969. Epub 2020 Jun 3.

19. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 Jun 1;77(6):683-90. doi: 10.1001/jamaneurol.2020.1127

20. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019 Nov 12;23(1):352. doi: 10.1186/s13054-019-2626-z

21. Helms J, Kremer S, Merdji H. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Jun 4;382(23):2268-70. doi: 10.1056/NEJMc2008597. Epub 2020 Apr 15.

22. Chaumont H, San-Galli A, Martino F, et al. Mixed central and peripheral nervous system disorders in severe SARS-CoV-2 infection. J Neurol. 2020 Nov;267(11):3121-7. doi: 10.1007/s00415-020-09986-y. Epub 2020 Jun 12.

23. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020 Jul;7(7):611-27. doi: 10.1016/S2215-0366(20)30203-0. Epub 2020 May 18.

24. Woo MS, Malsy J, Pöttgen J, et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020 Nov 23;2(2):fcaa205. doi: 10.1093/braincomms/fcaa205. eCollection 2020.

25. Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020 Oct;129:98-102. doi: 10.1016/j.jpsychires.2020.06.022. Epub 2020 Jun 30.

26. Hampshire A, Trender W, Chamberlain SR, et al. Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N=84,285 online study. medRxiv 2020;10.20.20215863. doi: 10.1101/2020.10.20.20215863

27. Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020 Jun 4;12(1):69. doi: 10.1186/s13195-020-00640-3

28. Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020 Aug 1;77(8):1018-27. doi: 10.1001/jamaneurol.2020.2065

29. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-80.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

30. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008 Aug;82(15):7264-75. doi: 10.1128/JVI.00737-08. Epub 2008 May 21.

31. Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020 Jul;140(1):1-6. doi: 10.1007/s00401-020-02166-2. Epub 2020 May 24.

32. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020 Aug 6;383(6):590-2. doi: 10.1056/NEJMc2011400

33. Egbert AR, Cankurtaran S, Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020 Oct;89:543-54. doi: 10.1016/j.bbi.2020.07.014. Epub 2020 Jul 17.

34. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020 Jul;146(1):119-127.e4. doi: 10.1016/j.jaci.2020.04.027. Epub 2020 Apr 29.

35. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020 May 1;130(5):2620-9. doi: 10.1172/JCI137244

36. Hosseini S, Wilk E, Michaelsen-Preusse K, et al. Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J Neurosci. 2018 Mar 21;38(12):3060-80. doi: 10.1523/JNEUROSCI.1740-17.2018. Epub 2018 Feb 27.

37. Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005 Sep 7;25(36):8240-9. doi: 10.1523/JNEUROSCI.1808-05.2005

38. Kollias A, Kyriakoulis KG, Dimakakos E, et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020 Jun;189(5):846-7. doi: 10.1111/bjh.16727. Epub 2020 May 4.

39. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020 Apr 15;22(2):95-7. Online ahead of print.

40. Kovalchuk VV. The role of the new coronavirus infection (COVID-19) in the progression and development of cerebrovascular diseases. A competent choice of pathogenic treatment is the key to success in treatment and prevention. An expert's view from the 'red zone'. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):57-66. doi: 10.14412/2074-2711-2021-1-57-66 (In Russ.).

41. Szatmaari S, Whitehouse P. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;(1):CD003119. doi: 10.1002/14651858.CD003119

42. Chukanova EI. Current aspects of the epidemiology and treatment of chronic brain ischemiain the presence of essential hypertension (results of the CALIPSO program). Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2011;3(1):38-42. doi: 10.14412/2074-2711-2011-132 (In Russ.).

43. Tabeyeva GR, Azimova YuE. The multimodal strategy for the neuroprotection in stroke: results of the Russian multicenter clinical- epidemiological program SOKOL. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2012;(12):20-30 (In Russ.).

44. Vakhnina NV, Milovanova OV. Neurological disorders in patients with hypertension and their correction. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2016;8(4):32-7. doi: 10.14412/2074-2711-2016-4-32-37 (In Russ.).

45. Kim D, Rybalkin SD, Pi X, et al. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation. 2001 Nov 6;104(19):2338-43. doi: 10.1161/hc4401.098432

46. Chiu PJ, Tetzloff G, Ahn HS, Sybertz EJ. Comparative effects of vinpocetine and 8-Br-cyclic GMP on the contraction and 45Ca-fluxes in the rabbit aorta. Am J Hypertens. 1988 Jul;1(3 Pt 1):262-8. doi: 10.1093/ajh/1.3.262

47. Osawa M, Maruyama S. Effects of TCV-3B (vinpocetine) on blood viscosity in ischemic cerebrovascular diseases. Ther Hung. 1985;33(1):7-12.

48. Hayakawa M. Effect of vinpocetine on red blood cell deformability in stroke patients. Arzneimittelforschung. 1992 Apr;42(4):425-7.

49. Kuzuya F. Effects of vinpocetine on platelet aggregability and erythrocyte deformability. Ther Hung. 1985;33(1):22-34.

50. Imamoto T, Tanabe M, Shimamoto N, et al. Cerebral circulatory and cardiac effects of vinpocetine and its metabolite, apovincaminic acid, in anesthetized dogs. Arzneimittelforschung. 1984;34(2):161-9.

51. Miyazaki M. The effect of a cerebral vasodilator, vinpocetine, on cerebral vascular resistance evaluated by the Doppler ultrasonic technique in patients with cerebrovascular diseases. Angiology. 1995 Jan;46(1):53-8. doi: 10.1177/000331979504600107

52. Shibota M, Kakihana M, Nagaoka A. [The effect of vinpocetine on brain glucose uptake in mice]. Nihon Yakurigaku Zasshi. 1982 Sep;80(3):221-4 (In Japan.).

53. Solti F. Cavinton, a new cerebral vasodilator. Ther Hung. 1979;27(1):15-6.

54. Solti F, Iskum M, Czako E. Effect of ethyl apovincaminate on the cerebral circulation. Studies in patients with obliterative cerebral arterial disease. Arzneimittelforschung. 1976;26(10a):1945-7.

55. Vora S, Gujar K. Vinpocetine: Hype, Hope and Hurdles towards Neuroprotection. Asian J Pharm Res Devel. 2013;1(4):17-23. Available from: http://ajprd.com/index.php/journal/article/view/71

56. Tamaki N, Kusunoki T, Matsumoto S. The effect of vinpocetine on cerebral blood flow in patients with cerebrovascular disorders. Ther Hung. 1985;33(1):13-21.

57. Tohgi H, Sasaki K, Chiba K, Nozaki Y. Effect of vinpocetine on oxygen release of hemoglobin and erythrocyte organic polyphosphate concentrations in patients with vascular dementia of the Binswanger type. Arzneimittelforschung. 1990 Jun;40(6):640-3.

58. Szakall S, Boros I, Balkay L, et al. Cerebral effects of a single dose of intravenous vinpocetine in chronic stroke patients: a PET study. J Neuroimaging. 1998 Oct;8(4):197-204. doi: 10.1111/jon199884197

59. Szilagyi G, Nagy Z, Balkay L, et al. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: a PET study. J Neurol Sci. 2005 Mar 15;229-30:275-84. doi: 10.1016/j.jns.2004.11.053. Epub 2005 Jan 8.

60. Feher G, Csecsei P, Papp J, et al. The Role of Adjuvant Vinpocetine Therapy in AspirinTreated Cerebrovascular Patients. J Cardiol Ther. 2020;7(1):942-5. Available from: http://www.ghrnet.org/index.php/jct/article/view/3000

61. Zhang C, Yan C. Updates of Recent Vinpocetine Research in Treating Cardiovascular Diseases. J Cell Immunol. 2020;2(5):211-219. doi: 10.33696/immunology.2.045


Review

Views: 1188


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)