Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Neuroprotective properties of lithium salts during glutamate-induced stress

Full Text:


Organic lithium salts are a promising area for searching for effective and safe neuroprotective drugs. By using chronic bilateral common carotid artery occlusion models, the authors have previously found that lithium gluconate and lithium citrate are effective agents to prevent a neurological deficit in brain ischemic or neurodegenerative damages. The use of organic lithium salts in brain ischemia leads to their targeted accumulation in the frontal lobes of the brain and in the cerebrospinal fluid, normalizing trace elemental homeostasis in the brain Objective: to compare the neuroprotective effects of different lithium salts (chloride, carbonate, ascorbate, and citrate).
Material and methods. A neurocytological study was performed using a glutamate-induced stress model in cultured granular neurons (CGNs).
The state of CGNs was monitored daily and at each experimental stage, by viewing in an inverted phase contrast microscope. The final concentrations of the test substances in the culture medium were 0.1, 0.2, and 0.5, and 1 mM. The survival of CGNs was quantified by directly counting the neurons with intact morphology in 5 fields of vision. Five experiments were carried out for each substance. The number of neurons with intact morphology in the control cultures was taken as 100% survival.
Results. Lithium chloride and lithium carbonate in the studied range of concentrations did not show significant neuroprotective properties.
Lithium ascorbate and lithium citrate, on the contrary, significantly increased the survival of neurons in mild, moderate and severe glutamateinduced stress. Lithium citrate at a concentration of 0.2 mM increased the survival rate of CGNs by an average of 30% (p < 0.003). The active neuroprotective principles of lithium citrate were shown to be both lithium ion and citrate anion. These positive qualities of the test organic lithium salts are explained primarily by the fact that ascorbate and citrate anions contribute to the enhanced transport of lithium ions into the cells through appropriate ion channels for the transport of organic acids (SLC13A5, etc.).
Conclusion. Lithium ascorbate and lithium citrate were confirmed to have an immediate neuroprotective effect on cerebellar CGNs. Treatment of CGNs with lithium citrate showed a 30% increase in cell survival during glutamate-induced stress.

About the Authors

A. V. Pronin
Ivanovo State Medical Academy
Russian Federation
8, Sheremetevsky Pr., Ivanovo 153000;

O. A. Gromova
Ivanovo State Medical Academy; Federal Research Center «Informatics and Control», Russian Academy of Sciences
Russian Federation

8, Sheremetevsky Pr., Ivanovo 153000;

40, Vavilov St., Moscow 119333;

I. Yu. Torshin
Federal Research Center «Informatics and Control», Russian Academy of Sciences
Russian Federation
40, Vavilov St., Moscow 119333;

E. V. Stelmashuk
Research Center of Neurology, Russian Academy of Sciences
Russian Federation
80, Volokolamskoe Shosse, Moscow 125367

O. P. Aleksandrova
Research Center of Neurology, Russian Academy of Sciences
Russian Federation
80, Volokolamskoe Shosse, Moscow 125367

E. E. Genrikhs
Research Center of Neurology, Russian Academy of Sciences
Russian Federation
80, Volokolamskoe Shosse, Moscow 125367

L. G. Khaspekov
Research Center of Neurology, Russian Academy of Sciences
Russian Federation
80, Volokolamskoe Shosse, Moscow 125367


1. Торшин ИЮ, Громова ОА, Майорова ЛА, Волков АЮ. О таргетных белках, участвующих в осуществлении нейропротекторных эффектов цитрата лития. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):78–83. [Torshin IYu, Gromova OA, Maiorova LA, Volkov AYu. Targeted proteins involved in the neuroprotective effects of lithium citrate. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(1):78–83. (In Russ.)]. doi: 10.14412/2074-2711-2017-1-78-83

2. Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev. 2007 May;28(3):339-63. Epub 2007 Apr 4.

3. Welsh GI, Proud CG. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J. 1993 Sep 15;294 (Pt 3):625-9.

4. Shim M, Smart RC. Lithium stabilizes the CCAAT/enhancer-binding protein alpha (C/EBPalpha) through a glycogen synthase kinase 3 (GSK3)-independent pathway involving direct inhibition of proteasomal activity. J Biol Chem. 2003 May 30;278(22):19674-81. Epub 2003 Mar 30.

5. Пронин АВ, Гоголева ИВ, Торшин ИЮ, Громова ОА. Нейротрофические эффекты лития при ишемических и нейродегенеративных поражениях мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;(2):99-108. [Pronin AV, Gogoleva IV, Torshin IYu, Gromova OA. Neurotrophic effects of lithium in ischemic and neurodegenerative brain lesions. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016;(2):99-108. (In Russ.)].

6. Jho Eh, Lomvardas S, Costantini F. A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun. 1999 Dec 9;266(1):28-35.

7. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004 Feb;29(2):95-102.

8. Ali A, Hoeflich KP, Woodgett JR. Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev. 2001 Aug;101(8):2527-40.

9. Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun. 2001 Jan 26;280(3):720-5.

10. Dudev T, Lim C. Competition between Li+ and Mg2+ in metalloproteins. Implications for lithium therapy. J Am Chem Soc. 2011 Jun 22; 133(24):9506-15. doi: 10.1021/ja201985s. Epub 2011 May 31.

11. Ребров ВГ, Громова ОА. Витамины, макро- и микроэлементы. Москва: ГЭОТАР- Медиа; 2008. 968 с. [Rebrov VG, Gromova OA. Vitaminy, makro- i mikroelementy [Vitamins, macro - and micronutrients]. Moscow: GEOTAR-Media; 2008. 968 p.]

12. Гоголева ИВ. Влияние органических солей лития, магния, селена на элементный гомеостаз головного мозга на фоне экспериментальной хронической двусторонней окклюзии общих сонных артерий. Автореф. дисс. канд. мед. наук. Москва; 2009. 23 с. [Gogoleva IV. The effect of organic salts of lithium, magnesium, selenium on elemental homeostasis of the brain on the background of experimental chronic bilateral occlusion of common carotid arteries. Avtoref. diss. kand. med. nauk. Moscow; 2009. 23 p.]

13. Андреева НА, Стельмашук ЕВ, Исаев НК и др. Нейропротекторные эффекты ноотропного дипептида ГВС-111 при кислородно-глюкозной депривации, глутаматной токсичности и оксидатовном стрессе in vitro. Бюллетень экспериментальной биологии и медицины. 2000;130(10):418-21. [Andreeva NA, Stel'mashuk EV, Isaev NK, et al. Neuroprotective properties of nootropic dipeptide GVS-111 in in vitro oxygen-glucose deprivation, glutamate toxicity and oxidative stress. Byulleten' eksperimental'noi biologii i meditsiny. 2000;130(10):418-21. (In Russ.)].

14. Громова ОА, Торшин ИЮ, Гоголева ИВ и др. Фармакокинетический и фармакодинамический синергизм между нейропептидами и литием в реализации нейротрофического и нейропротективного действия церебролизина. Журнал неврологии и психиатрии им. C.C. Корсакова. 2015;115(3):65-72. [Gromova OA, Torshin IYu, Gogoleva IV, et al. Pharmacokinetic and pharmacodynamic synergy between neuropeptides and lithium in the implementation of the neurotrophic and neuroprotective action of cerebrolysine. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2015;115(3):65-72. (In Russ.)].

15. Стельмашук ЕВ, Новикова СВ, Исаев НК. Влияние глутамина на гибель культивированных зернистых нейронов, индуцированную глюкозной депривацией и химической гипоксией. Биохимия. 2010;75(8):1150-6. [Stel'mashuk EV, Novikova SV, Isaev NK. Influence of glutamine on the death of cultured granular neurons induced by glucose deprivation and chemical hypoxia. Biokhimiya. 2010;75(8):1150-6. (In Russ.)].

16. Пронин АВ, Громова ОА, Сардарян ИС и др. Адаптогенные и нейропротективные свойства аскорбата лития. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;(12):86-91. [Pronin AV, Gromova OA, Sardaryan IS, et al. Adaptogenic and neuroprotective properties of lithium ascorbate. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016; (12):86-91. (In Russ.)].

17. Zheng J, Liu Z, Li W, et al. Lithium posttreatment confers neuroprotection through glycogen synthase kinase-3beta inhibition in intracerebral hemorrhage rats. J Neurosurg. 2017 Oct;127(4):716-724. doi: 10.3171/2016.7.JNS152995. Epub 2016 Oct 14.

18. Foltz DR, Santiago MC, Berechid BE, Nye JS. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol. 2002 Jun 25;12(12):1006-11.

19. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem. 2003 Aug 22;278(34):32227-35. Epub 2003 Jun 6.

For citation:

Pronin A.V., Gromova O.A., Torshin I.Yu., Stelmashuk E.V., Aleksandrova O.P., Genrikhs E.E., Khaspekov L.G. Neuroprotective properties of lithium salts during glutamate-induced stress. Neurology, Neuropsychiatry, Psychosomatics. 2017;9(3):111-119. (In Russ.)

Views: 538

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)