Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

https://doi.org/10.14412/2074-2711-2017-2-50-57

Full Text:

Abstract

Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.

Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin) versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.

Results and discussion. Chemoreactomic analysis has shown that thiamine disulfide can inhibit the molecular receptors involved in blood pressure regulation: adrenoceptors, vasopressin receptor, and angiotensin receptor. Thiamine disulfide can inhibit the reuptake of serotonin, increase its levels, inhibit benzodiazepine receptor and dopamine reuptake, and enhance neuronal acetylcholine release to a large extent than benfotiamine. These molecular effects are consistent with the sedative and anticonvulsant action profile of thiamine disulfide. Simulation has indicated that thiamine disulfide has neuroprotective, anti-inflammatory, normolipidemic, and antitumor activities.

Conclusion. The simulation results are confirmed by the available clinical and experimental findings and indicate the virtually unstudied molecular mechanisms of action of thiamine disulfide, benfotiamine, and thiamin hydrochloride. 

About the Authors

O. A. Gromova
Ivanovo State Medical Academy, Ministry of Health of Russia, Ivanovo; Russian Satellite Center of Trace Element Institute for UNESCO, N.I. Pirogov Russian National Medical Research University, Ministry of Health of Russia, Moscow
Russian Federation

8, Sheremetevsky Passage., Ivanovo 153000

1, Ostrovityanov St., Moscow 117997



I. Yu. Torshin
Russian Satellite Center of Trace Element Institute for UNESCO, N.I. Pirogov Russian National Medical Research University, Ministry of Health of Russia, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region
Russian Federation

1, Ostrovityanov St., Moscow 117997

9, Institutskiy Lane, Dolgoprudnyi, Moscow Region 141700 



L. V. Stakhovskaya
N.I. Pirogov Russian National Medical Research University, Ministry of Health of Russia, Moscow
Russian Federation
1, Ostrovityanov St., Moscow 117997


L. E. Fedotova
Ivanovo State Medical Academy, Ministry of Health of Russia, Ivanovo; Russian Satellite Center of Trace Element Institute for UNESCO, N.I. Pirogov Russian National Medical Research University, Ministry of Health of Russia, Moscow
Russian Federation

8, Sheremetevsky Passage., Ivanovo 153000

1, Ostrovityanov St., Moscow 117997



References

1. Ребров ВГ, Громова ОА. Витамины, макро- и микроэлементы. Москва: Геотар-Медиа; 2008. 986 с. [Rebrov VG, Gromova OA. Vitaminy, makro- i mikroelementy [Vitamins, macro- and micronutrients]. Moscow: Geotar-Media; 2008. 986 p.]

2. Громова ОА, Торшин ИЮ, Гусев ЕИ. Синергидные нейропротекторные эффекты тиамина, пиридоксина и цианкобаламина в рамках протеома человека. Фармакокинетика и фармакодинамика. 2016;(4):37-49. [Gromova OA, Torshin IYu, Gusev EI. Synergistic neuroprotective effects of thiamine, pyridoxine and cyanocobalamin in the framework of the human proteome. Farmakokinetika i farmakodinamika. 2016;(4):37-49. (In Russ.)].

3. Greenwood J, Pratt OE. Comparison of the effects of some thiamine analogues upon thi￾amine transport across the blood-brain barrier of the rat. J Physiol. 1985 Dec;369:79-91.

4. Volvert ML, Seyen S, Piette M, et al. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 2008 Jun 12;8:10. doi: 10.1186/1471-2210-8-10.

5. Torshin IYu. Bioinformatics in the postgenomic era: physiology and medicine. NovaBiomedicalBooks: New-York; 2007.

6. Журавлeв ЮИ, Рудаков КВ, Торшин ИЮ. Алгебраические критерии локальной разрешимости и регулярности как инструмент исследования морфологии аминокислотных последовательностей. Труды МФТИ. 2011;3(4):67-76. [Zhuravlev YuI, Rudakov KV, Torshin IYu. Algebraic criteria for local solvability and regularity as a tool to investigate the morphology of amino acid sequences. Trudy MFTI. 2011;3(4):67-76. (In Russ.)].

7. Рудаков КВ, Торшин ИЮ. Об отборе информативных значений признаков на базе критериев разрешимости в задаче распознавания вторичной структуры белка. ДАН. 2011;441(1):1-5. [Rudakov KV, Torshin IYu. About the selection of informative characteristic values on the basis of criteria of solvability in the problem of protein secondary structure recognition. DAN. 2011;441(1):1-5. (In Russ.)].

8. Журавлев ЮИ. Об алгебраическом подходе к решению задач распознавания или классификации. Проблемы кибернетики. 1978;(33):5-68. [Zhuravlev YuI. About algebraic approach to solving the problems of recognition or classification. Problemy kibernetiki. 1978; (33):5-68. (In Russ.)].

9. Торшин ИЮ, Громова ОА. Экспертный анализ данных в молекулярной фармакологии. Москва: Издательство МЦНМО; 2012. 768 с. [Torshin IYu, Gromova OA. Ekspertnyi analiz dannykh v molekulyarnoi farmakologii [Expert data analysis in molecular pharmacology]. Moscow: Izdatel'stvo MTsNMO; 2012. 768 p.]

10. Bolton E, Wang Y, Thiessen PA, Bryant SH. PubChem: Integrated Platform of Small Molecules and Biological Activities. In: Annual Reports in Computational Chemistry, Volume 4. Washington: American Chemical Society; 2008.

11. Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6.

12. Park JH, Lee JH, Jeong JO, et al. Thiamine deficiency as a rare cause of reversible severe pulmonary hypertension. Int J Cardiol. 2007; 121(1):e1-3 Epub 2007 Mar.

13. Alaei-Shahmiri F, Soares MJ, Zhao Y, Sherriff J. The impact of thiamine supplementation on blood pressure, serum lipids and C-reactive protein in individuals with hyperglycemia: a randomised, double-blind cross￾over trial. Diabetes Metab Syndr. 2015 Oct-Dec; 9(4):213-7. doi: 10.1016/j.dsx.2015.04.014. Epub 2015 Apr 29.

14. Cheong JH, Seo DO, Ryu JR, et al. Lead induced thiamine deficiency in the brain decreased the threshold of electroshock seizure in rat. Toxicology. 1999 Apr 15;133(2-3):105-13.

15. Vortmeyer AO, Colmant HJ. Differentiation between brain lesions in experimental thiamine deficiency. Virchows Arch A Pathol Anat Histopathol. 1988;414(1):61-7.

16. Irle E, Markowitsch HJ. Thiamine deficien￾cy in the cat leads to severe learning deficits and to widespread neuroanatomical damage. Exp Brain Res. 1982;48(2):199-208.

17. Fattal-Valevski A, Bloch-Mimouni A, Kivity S, et al. Epilepsy in children with infantile thiamine deficiency. Neurology. 2009 Sep 15;73(11): 828-33. doi: 10.1212/WNL.0b013e3181b121f5. Epub 2009 Jul 1.

18. Shrivastava AN, Kowalewski JM, Renner M, et al. Beta-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia. 2013 Oct;61(10):1673-86. doi: 10.1002/glia. 22548. Epub 2013 Aug 6.

19. Langlais PJ, Zhang SX. Extracellular gluta￾mate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. J Neurochem. 1993 Dec;61(6):2175-82.

20. Hamilton A, Zamponi GW, Ferguson SS. Glutamate receptors function as scaffolds for the regulation of beta-amyloid and cellular prion protein signaling complexes. Mol Brain. 2015 Mar 24;8:18. doi: 10.1186/s13041-015- 0107-0.

21. Cheney DL, Gubler CJ, Jaussi AW. Production of acetylcholine in rat brain follow￾ing thiamine deprivation and treatment with thiamine antagonists. J Neurochem. 1969 Sep; 16(9):1283-91.

22. de Andrade JA, Gayer CR, Nogueira NP, et al. The effect of thiamine deficiency on inflammation, oxidative stress and cellular migration in an experimental model of sepsis. J Inflamm (Lond). 2014 Apr 24;11:11. doi: 10.1186/1476-9255-11-11. eCollection 2014.

23. Moallem SA, Hosseinzadeh H, Farahi S. A study of acute and chronic anti-nociceptive and anti-inflammatory effects of thiamine in mice. Iran Biomed J. 2008 Jul;12(3):173-8.

24. Babaei-Jadidi R, Karachalias N, Kupich C, et al. High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia. 2004 Dec;47(12):2235-46. Epub 2004 Dec 11.

25. Naveed AK, Qamar T, Ahmad I, et al. Effect of thiamine on lipid profile in diabetic rats. J Coll Physicians Surg Pak. 2009 Mar;19(3): 165-8. doi: 03.2009/JCPSP.165168.

26. Al-Attas O, Al-Daghri N, Alokail M, et al. Metabolic Benefits of Six-month Thiamine Supplementation in Patients With and Without Diabetes Mellitus Type 2. Clin Med Insights Endocrinol Diabetes. 2014 Jan 23;7:1-6. doi: 10.4137/CMED.S13573. eCollection 2014.

27. Sheline CT. Thiamine supplementation attenuated hepatocellular carcinoma in the Atp7b mouse model of Wilson's disease. Anticancer Res. 2011 Oct;31(10):3395-9.

28. Sugimori N, Espinoza JL, Trung LQ, et al. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells. PLoS One. 2015 Apr 7;10(4):e0120709. doi: 10.1371/ journal.pone.0120709. eCollection 2015.


For citation:


Gromova O.A., Torshin I.Y., Stakhovskaya L.V., Fedotova L.E. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules. Neurology, Neuropsychiatry, Psychosomatics. 2017;9(2):50-57. (In Russ.) https://doi.org/10.14412/2074-2711-2017-2-50-57

Views: 266


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)