Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Mechanisms of valproate-induced teratogenesis

https://doi.org/10.14412/2074-2711-2017-1S-89-96

Full Text:

Abstract

The risks associated with in utero antiepileptic drug (AED) exposure are of great importance for both epileptic women and their offspring. This review considers the basic mechanisms of valproate-induced teratogenesis. It discusses the mechanisms of fetal valproic acid accumulation, oxidative stress, folate antagonism, and histone deacetylase inhibition. Analysis of the literature has shown a large number of studies that prove and disprove different mechanisms of valproate-induced teratogenesis. Histone deacetylase inhibition and oxidative stress have the most pronounced teratogenic effect; moreover, both mechanisms are particularly important in the first trimester of pregnancy when DNA dysregulation has the greatest impact on organogenesis. All the described mechanisms (and possibly many others) along with individual genetic characteristics, environmental factors, and lifestyle, each of which has not been defined, may lead to an increased risk for the teratogenic effects of valproic acid.

About the Authors

D. V. Dmitrenko
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation
1, Partisan Zheleznyak St., Krasnoyarsk 660022


N. A. Shnaider
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation
1, Partisan Zheleznyak St., Krasnoyarsk 660022


I. G. Strotskaya
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation
1, Partisan Zheleznyak St., Krasnoyarsk 660022


A. S. Kichkaylo
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation
1, Partisan Zheleznyak St., Krasnoyarsk 660022


S. N. Zobova
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia; Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

1, Partisan Zheleznyak St., Krasnoyarsk 660022;

50, Akademgorodok St., Krasnoyarsk 660036



References

1. Rodriguez-Sainz A, Pinedo-Brochado A, Sanchez-Menoyo JL, et al. Migraine, stroke and epilepsy: underlying and interrelated causes, diagnosis and treatment. Curr Treat Opt Cardiovasc Med. 2013;15(3):322-34. doi: 10.1007/s11936-013-0236-7

2. Chiu C-T, Wang, Z, Hunsberger JG, et al. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev. 2013;65:105-42. doi: 10.1124/pr.111.005512

3. Duncan JS, Sander JW, Sisodiya SM, et al. Adult epilepsy. Lancet (Lond). 2006;367:1087-100. doi: 10.1016/S0140-6736(06)68477-8

4. Hill DS, Wlodarczyk BJ, Palacios AM, et al. Teratogenic effects of antiepileptic drugs. Exp Rev Neurother. 2010;10:943-59. doi: 10.1586/ern.10.57

5. Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci. 2007;64:2090-103. doi: 10.1007/s00018-007-7079-x

6. Silva MF, Aires CC, Luis PB, et al. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis. 2008;31:205-16. doi: 10.1007/s10545-008-0841-x

7. Shen DD. Valproate. In: Loscher W, editor. Milestones in drug therapy. Basel: Birkhauser Verlag; 1999.

8. Vajda F. Dose issues in antiepileptic therapy. J Clin Neurosci. 2012;19:1475-7. doi: 10.1016/j.jocn.2012.05.003

9. Utoguchi N, Audus KL. Carrier-mediated transport of valproic acid in BeWo cells, a human trophoblast cell line. Int J Pharm. 2000;195:115-24. doi: 10.1016/S0378-5173(99)00398-1

10. Atkinson DE, Brice-Bennett S, D’Souza SW. Antiepileptic medication during pregnancy: does fetal genotype affect outcome? Pediatr Res. 2007;62:120-7. doi: 10.1203/PDR.0b013e3180a02e50

11. Scott WJ Jr, Schreiner CM, Nau H, et al. (1997) Valproate-induced limb malformations in mice associated with reduction of intracellular pH. Reprod Toxicol. 1997;11:483-93. doi: 10.1016/S0890-6238(97)00015-4

12. Sankar R. Teratogenicity of antiepileptic drugs: role of drug metabolism and pharmacogenomics. Acta Neurol Scand. 2007;116: 65-71. doi: 10.1111/j.1600-0404.2007.00830.x

13. Dmitrenko DV, Shnayder NA, Govorina YuB, Myravyova AV. The effect of CYP2C9 gene polymorphisms at the level of valproic acid in serum in women of reproductive age with epilepsy. Eur Sci Rev. 2015;(9-10):62-3.

14. Дмитренко ДВ, Шнайдер НА. Исследование полиморфизма гена CYP2C9 у женщин, принимающих вальпроаты. Медицинская генетика. 2015;(10):36-42 [Dmitrenko DV, Shnaider NA. Study of the polymorphism of the CYP2C9 gene in women taking valproate. Meditsinskaya Genetika. 2015;(10):36-42 (In Russ.)].

15. Dmitrenko DV, Shnayder NA, Kiselev IA, et al. Problems of rational therapy for epilepsy during pregnancy. Open J Obstet Gynecol. 2014;4(9):506-15. doi: 10.4236/ojog.2014.49072

16. Sekine T, Cha SH, Endou H. The multispecific organic anion transporter (OAT) family. Pflugers Arch Eur J Physiol. 2000;440:337-50. doi: 10.1007/s004240000297

17. Baltes S, Fedrowitz M, Tortos CL, et al. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharm Exper Ther. 2007;320:331-43. doi: 10.1124/jpet.106.102491

18. Tomson T, Battino D. Teratogenic effects of antiepileptic medications. Neurol Clin. 2009;27:993-1002. doi: 10.1016/j.ncl.2009.06.006

19. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Res Upd. 2004;7:97-110. doi: 10.1016/j.drup.2004.01.004

20. Abramov JP, Wells PG. (2011) Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. FASEB J. 2011;25:2188-200. doi: 10.1096/fj.11-182444

21. Tung EWY, Winn LM. Epigenetic modifications in valproic acid-induced teratogenesis. Toxicol Appl Pharm 2010;248:201-9. doi: 10.1016/j.taap.2010.08.001

22. Lloyd KA. A scientific review: mechanisms of valproate-mediated teratogenesis. Biosci Horiz. 2013;6:1-10. doi: 10.1093/biohorizons/hzt003

23. Wells PG, Lee CJJ, Mccallum GP, et al. Receptor- and reactive intermediate-mediated mechanisms of teratogenesis. Handb Exp Pharmacol. 2010;196:131-62. doi: 10.1007/978-3-642-00663-0_6

24. Liu H, Fu RY, Liao QK, et al. Valproic acid induced intracellular GSH-redox imbalance and apoptosis of leukemic cells resistant to dexamethasone and doxorubicin. J Sichuan Univ (Med Sci Ed). 2009;40:133-7.

25. Wu G, Nan C, Rollo JC, et al. Sodium valproate-induced Congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase. J Biomed Sci. 2010;17:16-22. doi: 10.1186/1423-0127-17-16

26. Verrotti A, Scardapane A, Franzoni E, et al. Increased oxidative stress in epileptic children treated with valproic acid. Epilepsy Res. 2008;78: 171-7. doi: 10.1016/j.eplepsyres.2007.11.005

27. Zaken V, Kohen R, Ornoy A. The development of antioxidant defense mechanism in young rat embryos in vivo and in vitro. Early Pregnancy. 2000 Apr;4(2):110-23.

28. Tung EWY, Winn LM. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharm. 2011;80:979-87. doi: 10.1124/mol.111.072314

29. Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet. 2003;4:784-93. doi: 10.1038/nrg1181

30. Jentink J, Bakker MK, Nijenhuis CM, et al. Does folic acid use decrease the risk for spina bifida after in utero exposure to valproic acid? Pharmacoepidemiol Drug Safety. 2010;19:803-7. doi: 10.1002/pds.1975

31. Kalhan SC, Marczewski SE. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev Endocr Metab Disord. 2012;13:109-19. doi: 10.1007/s11154-012-9215-7

32. Дмитренко ДВ, Шнайдер НА, Говорина ЮБ и др. Роль наследственных нарушений обмена фолиевой кислоты в формировании врожденных пороков развития у плода у женщин, принимающих противоэпилептические препараты. Эпилепсия и пароксизмальные состояния. 2014;(4):16-22 [Dmitrenko DV, Shnaider NA, Govorina YuB, et al The role of hereditary disorders of folic acid metabolism in the formation of congenital malformations in the fetus in women taking antiepileptic drugs. Epilepsiya i Paroksizmal'nye Sostoyaniya. 2014;(4):16-22 (In Russ.)].

33. Pulikkunnel ST, Thomas SV. Neural tube defects: pathogenesis and folate metabolism. J Assoc Physicians India. 2005;53:127-35.

34. Smith J, Whitehall J. Sodium valproate and the fetus: a case study and review of the literature. J Neonatal Nursing. 2009;28:363-7. doi: 10.1891/0730-0832.28.6.363

35. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131-7. doi: 10.1016/0140-6736(91)90133-A

36. Blencowe H, Cousens S, Modell B, Lawn J. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol. 2010 Apr;39 Suppl 1:i110-21. doi: 10.1093/ije/dyq028

37. Chen G, Song X, Ji Y, et al. Prevention of NTDs with periconceptional multivitamin supplementation containing folic acid in China. Birth Def Res Clin Mol Teratol. 2008;82(8): 592-6. doi: 10.1002/bdra.20471

38. Wilffert B, Altena J, Tijink L, et al. Pharmacogenetics of druginduced birth defects: what is known so far? Pharmacogenomics. 2011; 12:547-58. doi: 10.2217/pgs.10.201

39. Elmazar MM, Nau H. Trimethoprim potentiates valproic acid-induced neural tube defects in mice. Reprod Toxicol. 1993;7:249-54. doi: 10.1016/0890-6238(93)90231-U. [PubMed: 8318756].

40. Schwaninger M, Ringleb P, Winter R, et al. Elevated plasma concentrations of homocysteine in antiepileptic drug treatment. Epilepsia. 1999;40:345-50. doi: 10.1111/j.1528-1157.1999.tb00716.x

41. Padmanabhan R, Shafiullah MM. Amelioration of sodium valproate-induced neural tube defects in mouse fetuses by maternal folic acid supplementation during gestation. Congenit Anom (Kyoto). 2003;43:29-40. doi: 10.1111/j.1741-4520.2003.tb01024.x

42. Wald DS, Bishop L, Wald NJ, et al. Randomized trial of folic acid supplementation and serum homocysteine levels. Arch Intern Med. 2001;161(5):695-700. doi: 10.1001/archinte.161.5.695

43. Yang J, Chen H, Vlahov IR, et al. Characterization of the pH of folate receptorcontaining endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J Pharmacol Exp Ther. 2007;321:462-8. doi: 10.1124/jpet.106.117648

44. Bandara NA, Hansen MJ, Low PS. Effect of receptor occupancy on folate receptor internalization. Mol Pharm. 2014;11:1007-13. doi: 10.1021/mp400659t

45. Solanky N, Requena Jimenez A, D’Souza SW, et al. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta. 2010;31:134-43. doi: 10.1016/j.placenta.2009.11.017

46. Boshnjaku V, Shim KW, Tsurubuchi T, et al. Nuclear localization of folate receptor alpha: a new role as a transcription factor. Sci Rep. 2012;(2):980. doi: 10.1038/srep00980

47. Fathe K, Palacios A, Finnell RH. Brief report novel mechanism for valproate-induced teratogenicity. Birth Defects Res Clin Mol Teratol. 2014Aug;100(8):592-7. doi: 10.1002/bdra.23277. Epub 2014 Jul 26.

48. Kishi T, Fujita N, Eguchi TA, et al. Mechanism for reduction of serum folate by antiepileptic drugs during prolonged therapy. J Neurol Sci. 1997;145:109-12. doi: 10.1016/S0022-510X(96)00256-0

49. Roy M, Leclerc D, Wu Q, et al. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency. J Cell Biochem. 2008;105:467-76. doi: 10.1002/jcb.21847

50. Kini U, Lee R, Jones A, et al. Influence of the MTHFR Genotype on the rate of malformations following exposure to antiepileptic drugs in utero. Eur J Med Genet. 2007;50:411-20. doi: 10.1016/j.ejmg.2007.08.002

51. Дмитренко ДВ. Профилактика врожденных пороков развития у плода с учетом фармакогенетических особенностей метаболизма антиэпилептических препаратов и наследственных нарушений фолатного цикла. Неврология, нейропсихиатрия, психосоматика. 2014;6(1S):31-8 [Dmitrenko DV. Prevention of fetal congenital malformations with allowance for the pharmacogenetic features of the metabolism of antiepileptic drugs and hereditary abnormalities in the folate cycle. Nevrologiya, Neiropsikhiatriya, Psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2014;6(1S):31-8 (In Russ.)]. doi: 10.14412/2074-2711-2014-1S-31-38

52. Hsieh CL, Wang HE, Tsai WJ, et al. Multiple point action mechanism of valproic acid-teratogenicity alleviated by folic acid, vitamin C, and N-acetylcysteine in chicken embryo model. Toxicology. 2012;291:32-42. doi: 10.1016/j.tox.2011.10.015

53. Butterworth CE Jr, Bendich A. Folic acid and the prevention of birth defects. Ann Rev Nutr. 1996;16:73-97. doi: 10.1146/annurev.nu.16.070196.000445

54. Dawson JE, Raymond AM, Winn LM. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice, Toxicol Appl Pharm. 2006;211:124-32. doi: 10.1016/j.taap.2005.07.008

55. Campbell NA, Reece JB, Urry LA, et al. Biology. San Fransisco: Pearson Benjamin Cummings; 2008.

56. Kuo M-H, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays. 1998;20:615-26. doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AIDBIES4>3.0.CO;2-H

57. Pan H, Cao J, Xu W. Selective histone deacetylase inhibitors. Anti-Cancer Agents Med Chem. 2012;12:247-70. doi: 10.2174/18715201 2800228814

58. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349-52. doi: 10.1038/38664

59. Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol. 2009;28:1-20. doi: 10.1016/j.reprotox.2009.02.014

60. Choi JC, Holtz R, Murphy SP. Histone deacetylases inhibit IFN-α-inducible gene expression in mouse trophoblast cells. J Immunol. 2009;182:6307-15. doi: 10.4049/jimmunol.0802454

61. Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7:437-43. doi: 10.1038/86507

62. Blaheta RA, Nau H, Michaelis M, Cinatl J Jr. Valproate and valproate analogues: potent tools to fight against cancer. Curr Med Chem. 2002;9:1417-33. doi: 10.2174/0929867023369763

63. Lampen A, Carlberg C, Nau H. Peroxisome proliferator-activated receptor delta is a specific sensor for teratogenic valproic acid derivatives. Eur J Pharmacol. 2001;431:25-33. doi: 10.1016/S0014-2999(01)01423-6

64. Tomson T, Marson A, Boon P, et al. Valproate in the treatment of epilepsy in girls and women of childbearing potential. Epilepsia. 2015;56(7):1006-19. doi: 10.1111/epi.13021

65. Klein AM. Epilepsy cases in pregnant and postpartum women: a practical approach. Sem Neurol. 2011;31:392-6. doi: 10.1055/s-0031-1293538

66. Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structureactivity relationships: history and new QSAR perspectives. Med Res Rev. 2012;32:1-165. doi: 10.1002/med.20200


For citation:


Dmitrenko D.V., Shnaider N.A., Strotskaya I.G., Kichkaylo A.S., Zobova S.N. Mechanisms of valproate-induced teratogenesis. Neurology, Neuropsychiatry, Psychosomatics. 2017;9(1S):89-96. (In Russ.) https://doi.org/10.14412/2074-2711-2017-1S-89-96

Views: 186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)