Neurology, Neuropsychiatry, Psychosomatics

Advanced search


Full Text:


The efficacy of ethylmethylhydroxypyridine succinate (EMHPS)  depends on the concentration and activity of proteomic proteins. To provide the body with magnesium and pyridoxine is an important condition for the efficacy of EMHPS because these micronutrients are essential for maintaining neuronal function.

Objective: to analyze the biological effects of pyridoxineand magnesium-dependent proteins providing the molecular mechanisms of multi-targeted action of EMHPS,  pyridoxine, and magnesium.

Material and methods. Proteins that interact with both pyridoxine and magnesium were found in the genomic and proteomic databases. A list of 78 vitamin B6-dependent proteins, which is based on the available human genome records in NCBIPROTEIN, EMBL,  UNIPROT,  and HumanProteomeMap databases, was analyzed using a functional binding assay. The same assay was also applied to analyze a list 720 magnesium-dependent proteins.

Results. The analysis has shown that 78 pyridoxine-dependent proteomic proteins are necessary for: 1) the synthesis and processing of amino acids; 2) cell energy metabolism (ATP synthesis), and 3) the synthesis of neurotransmitters and neuronal membranes. MexiB 6 has numerous synergistic interactions between the molecules of EMHPS,  pyridoxine, and magnesium. The combination of the components of EMHPS,  pyridoxine and magnesium in MexiB 6 (triple synergism) allows prediction that the drug has more pronounced clinical effects than the molecules of EMHPS,  which emerges in its antihypoxic and antioxidant activities, the improvement of synaptic transmission of a signal, the neutralization of homocysteine, and the regulation of lipid and carbohydrate metabolism (restoration of cell sensitivity to insulin and carbohydrates in patients with atherosclerosis and in those at risk for diabetes mellitus or obesity). Pyridoxineand magnesium-induced potentiation of the effects of EMHPS may enhance its activity.

About the Authors

O. A. Gromova
Ivanovo State Medical Academy
Russian Federation

Olga Alekseevna Gromovaю.

8, Sheremetevsky Pr., Ivanovo 153000,

I. Yu. Torshin
Moscow Institute of Physics and Technology
Russian Federation

9, Institutsky Lane, Dolgoprudnyi, Moscow Region 141700

A. G. Kalacheva
Ivanovo State Medical Academy
Russian Federation

8, Sheremetevsky Pr., Ivanovo 153000

V. A. Semenov
Kemerovo State Medical Academy
Russian Federation

22A, Voroshilov St., Kemerovo 650056

K. V. Rudakov
Moscow Institute of Physics and Technology
Russian Federation

9, Institutsky Lane, Dolgoprudnyi, Moscow Region 141700


1. Харкевич ДА. Основы фармакологии. 2-е изд. Москва: ГЭОТАР-Медиа; 2015. 752 с. [Kharkevich DA. Osnovy farmakologii [The basics of pharmacology]. 2nd ed. Moscow: GEOTAR-Media; 2015. 752 p.]

2. Конопля АИ, Ласков ВБ, Шульгинова АА. Иммунные и оксидантные нарушения у больных с хронической ишемией мозга и их коррекция. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015;115(11): 28-32. [Konoplya AI, Laskov VB, Shul'ginova AA. Immune and oxygen disturbances in patients with chronic cerebral ischemia and their correction. Zhurnal nevrologii i psikhiatrii im S.S. Korsakova. 2015;115(11):28-32. (In Russ.)]. DOI: 10.17116/jnevro201511511128-32

3. Громова ОА, Торшин ИЮ, Федотова ЛЭ, Громов АН. Хемореактомный анализ сукци ната этилметилгидроксипиридина. Неврология, нейропсихиатрия, психосоматика. 2016;8(3):53-60. [Gromova OA, Torshin IYu, Fedotova LE, Gromov AN. Chemoreactome analysis of ethylmethylhydroxypyridine succinate. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, neuropsychiatry, psychosomatics. 2016;8(3):53–60. (In Russ.)]. DOI:

4. Torshin IYu, Gromova OA. Magnesium and pyridoxine: fundamental studies and clinical practice. New York: Nova Science Publ; 2011. 196 p.

5. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. In: Bioinformatics in the Post-Genomic Era. New York: Nova Biomedical Books; 2009.

6. Громова ОА, Калачева АГ, Торшин ИЮ и др. Недостаточность магния – достоверный фактор риска коморбидных состояний: результаты крупномасштабного скрининга магниевого статуса в регионах России. Фарматека. 2013;(6):115–29. [Gromova OA, Kalacheva AG, Torshin IYu, et al. Deficiency of magnesium – a significant risk factor of comorbid conditions: results of a large-scale screening of magnesium status in the regions of Russia. Farmateka. 2013;(6):115–29. (In Russ.)].

7. Громова ОА, Торщин ИЮ, Лиманова ОА и др. Анализ взаимосвязи между обеспеченностью магнием и риском соматических заболеваний у россиянок 18–45 лет методами интеллектуального анализа данных. Эффективная фармакотерапия. Акушерство и гинекология. 2014;(2):10-23. [Gromova OA, Torshchin IYu, Limanova OA, et al. Analysis of the relationship between the availability of magnesium and risk of somatic diseases in 18–45 y/o women with data mining methods. Effective pharmacotherapy. Akusherstvo i ginekologiya. 2014;(2):10-23. (In Russ.)].

8. Li MM, Yu JT, Wang HF, et al. Efficacy of vitamins B supplementation on mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Curr Alzheimer Res. 2014;11(9):844-52.

9. Hankey GJ, Ford AH, Yi Q, et al; VITATOPS Trial Study Group. Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: a prespecified secondary analysis of a randomized, placebocontrolled trial and meta-analysis. Stroke. 2013 Aug;44(8):2232-9. doi: 10.1161/STROKEAHA.113.001886.

10. Hankey GJ, Ford AH, Yi Q, et al; VITATOPS Trial Study Group. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol. 2010 Sep;9(9):855-65. doi: 10.1016/S1474-4422(10)70187-3. Epub 2010 Aug 3.

11. Weis MT, Bercute A. Comparison of long-chain fatty acyl-CoA synthetases from rabbit heart and liver: substrate preferences and effects of Mg2+. Biochem J. 1997 Mar 1;322 ( Pt 2):649-54.

12. Inoue I. Lipid metabolism and magnesium. Clin Calcium. 2005 Nov;15(11):65-76.

13. Mahfouz MM, Kummerow FA. Effect of magnesium deficiency on delta 6 desaturase activity and fatty acid composition of rat liver microsomes. Lipids. 1989 Aug;24(8):727-32.

14. Hruby A, O'Donnell CJ, Jacques PF, et al. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. JACC Cardiovasc Imaging. 2014 Jan;7(1):59-69. doi: 10.1016/j.jcmg.2013.10.006. Epub 2013 Nov 27.

15. Ohira T, Peacock JM, Iso H. Serum and dietary magnesium and risk of ischemic stroke: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2009 Jun 15;169(12):1437-44. doi: 10.1093/aje/kwp071. Epub 2009 Apr 16.

16. van der Wijst J, Hoenderop JG, Bindels RJ. Epithelial Mg2+ channel TRPM6: insight into the molecular regulation. Magnes Res. 2009 Sep;22(3):127-32.

17. Walder RY, Yang B, Stokes JB. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet. 2009 Nov 15;18(22):4367-75. doi: 10.1093/hmg/ddp392. Epub 2009 Aug 18.

18. Campo S, Breda E, Di Girolamo M. Hypomagnesaemia on antibiotic therapy. Postgrad Med J. 1988 Apr;64(750):336-7.

19. Громова ОА, Серов ВН, Керимкулова НВ и др. Мировой опыт использования пиридоксина: экспериментальная и клиническая база применения в акушерско-гинекологической практике. Гинекология. 2013;(1):85-92. [Gromova OA, Serov VN, Kerimkulova NV, et al. International experience of the use of pyridoxine: an experimental and clinical use in obstetric practice. Ginekologiya. 2013;(1):85-92. (In Russ.)].

20. Morris MS, Sakakeeny L, Jacques PF, et al. Vitamin B-6 intake is inversely related to, and the requirement is affected by, inflammation status. J Nutr. 2010 Jan;140(1):103-10. doi: 10.3945/jn.109.114397. Epub 2009 Nov 11.

21. Schwammenthal Y, Tanne D. Homocysteine, B-vitamin supplementation, and stroke prevention: from observational to interventional trials. Lancet Neurol. 2004 Aug; 3(8):493-5.

22. Ambrosch A, Dierkes J, Lobmann R, et al. Relation between homocysteinaemia and diabetic neuropathy in patients with Type 2 diabetes mellitus. Diabet Med. 2001 Mar;18(3): 185-92.

23. Martinez M, Cuskelly GJ, Williamson J, et al. Vitamin B-6 deficiency in rats reduces hepatic serine hydroxymethyltransferase and cystathionine beta-synthase activities and rates of in vivo protein turnover, homocysteine remethylation and transsulfuration. J Nutr. 2000 May;130(5):1115-23.

24. Dong M, Lu Y, Zha Y, Yang H. Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor. J Mol Neurosci. 2015 Feb;55(2):500-8. doi: 10.1007/s12031-014-0371-y. Epub 2014 Jul 11.

25. Chacko SA, Song Y, Nathan L, et al. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care. 2010 Feb;33(2):304-10. doi: 10.2337/dc09-1402. Epub 2009 Nov 10.

26. de Oliveira Otto MC, Alonso A, Lee DH, et al. Dietary micronutrient intakes are associated with markers of inflammation but not with markers of subclinical atherosclerosis. J Nutr. 2011 Aug;141(8):1508-15. doi: 10.3945/jn.111.138115. Epub 2011 Jun 8.

27. Midttun O, Hustad S, Schneede J, et al. Plasma vitamin B-6 forms and their relation to transsulfuration metabolites in a large, population-based study. Am J Clin Nutr. 2007 Jul; 86(1):131-8.


For citations:

Gromova O.A., Torshin I.Yu., Kalacheva A.G., Semenov V.A., Rudakov K.V. MexiB 6 AS A RESULT OF FORTIFICATION OF ETHYLMETHYLHYDROXYPYRIDINE SUCCINATE WITH MAGNESIUM AND PYRIDOXINE: PROTEOME EFFECTS. Neurology, Neuropsychiatry, Psychosomatics. 2016;8(4):38-44. (In Russ.)

Views: 894

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)