The brain-computer interface in the recovery of upper limb motor function after stroke
https://doi.org/10.14412/2074-2711-2025-2-93-99
Abstract
Brain-computer interface (BCI) technology is a promising development for restoring motor functions of the upper limb (UL). The article presents the data of randomized clinical trials from 2016 to 2024 years on the use of BCIs in post-stroke dysfunction of UL, depending on the severity of paresis, the time of starting and length of rehabilitation period, the training mode and the evaluated indicator. BCI stimulates neuroplasticity, which is confirmed by functional magnetic resonance imaging data. The efficacy of BCI in restoring UL function after stroke is shown according to the Fugl-Meyer Assessment (FMA) and the Action Research Arm Test (ARAT) in patients with moderate and severe paresis. Data on the duration of motor, cognitive and emotional improvement and the impact on functional independence are only available in a limited number of studies and require further investigation.
About the Authors
M. Yu. PankovRussian Federation
Department of Neurology, Neurosurgery and Medical Genetics, Institute of Neuroscience and Neurotechnology
1, Ostrovityanova St., Moscow 117513
Competing Interests:
The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.
E. V. Kostenko
Russian Federation
Department of Neurology, Neurosurgery and Medical Genetics, Institute of Neuroscience and Neurotechnology
1, Ostrovityanova St., Moscow 117513;
21, Vucheticha St., Moscow 127206
Competing Interests:
The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.
L. V. Petrova
Russian Federation
21, Vucheticha St., Moscow 127206
Competing Interests:
The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.
M. S. Filippov
Russian Federation
21, Vucheticha St., Moscow 127206
Competing Interests:
The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.
References
1. Dalton EJ, Jamwal R, Augoustakis L, et al. Prevalence of Arm Weakness, Pre-Stroke Outcomes and Other Post-Stroke Impairments Using Routinely Collected Clinical Data on an Acute Stroke Unit. Neurorehabil Neural Repair. 2024 Feb;38(2):148-60. doi: 10.1177/15459683241229676. Epub 2024 Feb 10.
2. Simpson LA, Hayward KS, McPeake M, et al. Challenges of Estimating Accurate Prevalence of Arm Weakness Early After Stroke. Neurorehabil Neural Repair. 2021 Oct;35(10):871-9. doi: 10.1177/15459683211028240. Epub 2021 Jul 28.
3. Kostenko EV, Petrova LV, Martynov MYu, Pogonchenkova IV. Effectiveness of rehabilitation with virtual reality and biofeedback in recovery of hand function after stroke. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(3-2):68-75. doi: 10.17116/jnevro202312303268 (In Russ.).
4. Petrova LV, Kostenko EV, Martynov MYu, et al. The effect of rehabilitation with sensory glove and virtual reality on concentration of brain-derived neurotrophic factor and event related potential P300 in the early rehabilitation period after ischemic stroke. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(12-2):75-81. doi: 10.17116/jnevro202312312275 (In Russ.).
5. Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput Biol Med. 2020 Aug;123:103843. doi: 10.1016/j.compbiomed.2020.103843. Epub 2020 Jun 7.
6. Molinari M, Masciullo M. Stroke and potential benefits of brain-computer interface. Handb Clin Neurol. 2020;168:25-32. doi: 10.1016/B978-0-444-63934-9.00003-2
7. Carvalho R, Dias N, Cerqueira JJ. Brain-machine interface of upper limb recovery in stroke patients rehabilitation: A systematic review. Physiother Res Int. 2019 Apr;24(2):e1764. doi: 10.1002/pri.1764. Epub 2019 Jan 4.
8. Baniqued PDE, Stanyer EC, Awais M, et al. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil. 2021 Jan 23;18(1):15. doi: 10.1186/s12984-021-00820-8
9. Fu J, Chen S, Jia J. Sensorimotor rhythm-based brain-computer interfaces for motor tasks used in hand upper extremity rehabilitation after stroke: a systematic review. Brain Sci. 2022 Dec;13(1):56. doi: 10.3390/brainsci13010056
10. Bai Z, Fong KNK, Zhang JJ, et al. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J NeuroEngineering Rehabil. 2020 Apr;17(1):57. doi: 10.1186/s12984-020-00686-2
11. Kruse A, Suica Z, Taeymans J, Schuster-Amft C. Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke – a systematic review and meta-analysis. BMC Neurol. 2020 Oct 22;20(1):385. doi: 10.1186/s12883-020-01960-5
12. Yang W, Zhang X, Li Z, et al. The effect of brain-computer interface training on rehabilitation of upper limb dysfunction after stroke: a meta-analysis of randomized controlled trials. Front Neurosci. 2022 Feb;15:766879. doi: 10.3389/fnins.2021.766879
13. Mansour S, Ang KK, Nair KPS, et al. Efficacy of brain-computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: a systematic review and meta-analysis of randomized controlled trials. Clin EEG Neurosci. 2022 Jan;53(1):79-90. doi: 10.1177/15500594211009065
14. Peng Y, Wang J, Liu Z, et al. The application of brain-computer interface in upper limb dysfunction after stroke: a systematic review and meta-analysis of randomized controlled trials. Front Hum Neurosci. 2022 Mar;16:798883. doi: 10.3389/fnhum.2022.798883
15. Nojima I, Sugata H, Takeuchi H, Mima T. Brain-Computer Interface Training Based on Brain Activity Can Induce Motor Recovery in Patients With Stroke: A Meta-Analysis. Neurorehabil Neural Repair. 2022 Feb;36(2):83-96. doi: 10.1177/15459683211062895. Epub 2021 Dec 27.
16. Xie YL, Yang YX, Jiang H, et al. Brainmachine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials. Front Neurosci. 2022 Aug 3;16:949575. doi: 10.3389/fnins.2022.949575
17. Shou YZ, Wang XH, Yang GF. Verum versus Sham brain-computer interface on upper limb function recovery after stroke: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2023 Jun 30;102(26):e34148. doi: 10.1097/MD.0000000000034148
18. Gao W, Cui Z, Yu Y, et al. Application of a Brain-Computer Interface System with Visual and Motor Feedback in Limb and Brain Functional Rehabilitation after Stroke: Case Report. Brain Sci. 2022 Aug 16;12(8):1083. doi: 10.3390/brainsci12081083
19. Zhang R, Wang C, He S, et al. An Adaptive Brain-Computer Interface to Enhance Motor Recovery After Stroke. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2268-78. doi: 10.1109/TNSRE.2023.3272372. Epub 2023 May 12.
20. Craik A, Gonzalez-Espana JJ, Alamir A, et al. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface. Sensors (Basel). 2023 Jun 26;23(13):5930. doi: 10.3390/s23135930
21. Behboodi A, Lee WA, Hinchberger VS, Damiano DL. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. J Neuroeng Rehabil. 2022 Sep 28;19(1):104. doi: 10.1186/s12984-022-01081-9
22. Huster RJ, Mokom ZN, Enriquez-Geppert S, Herrmann CS. Braincomputer interfaces for EEG neurofeedback: peculiarities and solutions. Int J Psychophysiol. 2014 Jan;91(1):36-45. doi: 10.1016/j.ijpsycho.2013.08.011. Epub 2013 Sep 4.
23. Mridha MF, Das SC, Kabir MM, et al. Brain-Computer Interface: Advancement and Challenges. Sensors (Basel). 2021 Aug 26;21(17):5746. doi: 10.3390/s21175746
24. Mokienko OA, Chernikova LA, Frolov AA, Bobrov PD. Motor imagery and its practical application. Neurosci Behav Physiol. 2014 May;44(5):483-9. doi: 10.1007/s11055-014-9937-y
25. Bhagat NA, Yozbatiran N, Sullivan JL, et al. Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. Neuroimage Clin. 2020;28:102502. doi: 10.1016/j.nicl.2020.102502. Epub 2020 Nov 19.
26. Bertani R, Melegari C, De Cola MC, et al. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017 Sep;38(9):1561-9. doi: 10.1007/s10072-017-2995-5. Epub 2017 May 24.
27. Chivukula S, Jafari M, Aflalo T, et al. Cognition in Sensorimotor Control: Interfacing With the Posterior Parietal Cortex. Front Neurosci. 2019 Feb 27;13:140. doi: 10.3389/fnins.2019.00140
28. Rubakova AA, Ivanova GE, Bulatova MA. Activation of sensorimotor integration processes with a brain-computer interface. Vestnik RGMU = Bulletin of RSMU. 2021;(5):29-35. doi: 10.24075/vrgmu.2021.039 (In Russ.).
29. Lyukmanov RKh, Aziatskaya GA, Mokienko OA, et al. Post-stroke rehabilitation training with a brain-computer interface: a clinical and neuropsychological study. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(8):43-51. doi: 10.17116/jnevro201811808143 (In Russ.).
30. Frolov AA, Mokienko O, Lyukmanov R, et al. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial. Front Neurosci. 2017 Jul 20;11:400. doi: 10.3389/fnins.2017.00400
31. Wu Q, Yue Z, Ge Y, et al. Brain Functional Networks Study of Subacute Stroke Patients With Upper Limb Dysfunction After Comprehensive Rehabilitation Including BCI Training. Front Neurol. 2020 Jan 27;10:1419. doi: 10.3389/fneur.2019.01419
32. Li M, Liu Y, Wu Y, et al. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training. Int J Neurosci. 2014 Jun;124(6):403-15. doi: 10.3109/00207454.2013.850082. Epub 2013 Oct 31.
33. Ma ZZ, Wu JJ, Hua XY, et al. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol. 2023 Jun 6;14:1135466. doi: 10.3389/fneur.2023.1135466
34. Biasiucci A, Leeb R, Iturrate I, et al. Brainactuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018 Jun 20;9(1):2421. doi: 10.1038/s41467-018-04673-z
35. Ramos-Murguialday A, Broetz D, Rea M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013 Jul;74(1):100-8. doi: 10.1002/ana.23879. Epub 2013 Aug 7.
36. Hramov AE, Maksimenko VA, Pisarchik AN. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys Rep. 2021;918:1-133. doi: 10.1016/j.physrep.2021.03.002
37. Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEGbased brain-computer interfaces: a 10 year update. J Neural Eng. 2018 Jun;15(3):031005. doi: 10.1088/1741-2552/aab2f2. Epub 2018 Feb 28.
38. Koroleva ES, Alifirova VM, Latypova AV, et al. Principles and global experience of applying robotic rehabilitation technologies in patients after stroke. Bulleten’ sibirskoj mediciny = Bulletin of Siberian Medicine. 2019;18(2):223-33. doi: 10.20538/1682-0363-2019-2-223-233 (In Russ.).
39. Mihara M, Hattori N, Hatakenaka M, et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagerybased training in poststroke victims: a pilot study. Stroke. 2013 Apr;44(4):1091-8. doi: 10.1161/STROKEAHA.111.674507. Epub 2013 Feb 12.
40. Sinha AM, Nair VA, Prabhakaran V. BrainComputer Interface Training With Functional Electrical Stimulation: Facilitating Changes in Interhemispheric Functional Connectivity and Motor Outcomes Post-stroke. Front Neurosci. 2021 Sep 27;15:670953. doi: 10.3389/fnins.2021.670953
41. Ertelt D, Binkofski F. Action observation as a tool for neurorehabilitation to moderate motor deficits and aphasia following stroke. Neural Regen Res. 2012 Sep 15;7(26):2063-74. doi: 10.3969/j.issn.1673-5374.2012.26.008
42. Buccino G. Action observation treatment: a novel tool in neurorehabilitation. Philos Trans R Soc Lond B Biol Sci. 2014 Apr 28;369(1644):20130185. doi: 10.1098/rstb.2013.0185
43. Cunha RG, Da-Silva PJ, Dos Santos Couto Paz CC, et al. Influence of functional task-oriented mental practice on the gait of transtibial amputees: a randomized, clinical trial. J Neuroeng Rehabil. 2017 Apr 11;14(1):28. doi: 10.1186/s12984-017-0238-x
44. Park JS, Choi JB, An DH, Chang MY. Effects of mental practice combined with electromyogram-triggered electrical stimulation for upper extremity function in stroke patients. J Phys Ther Sci. 2017 Oct;29(10):1819-20. doi: 10.1589/jpts.29.1819. Epub 2017 Oct 21.
45. Liu X, Zhang W, Li W, et al. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial. BMC Neurol. 2023 Mar 31;23(1):136. doi: 10.1186/s12883-023-03150-5
46. Brunner I, Lundquist CB, Pedersen AR, et al. Brain computer interface training with motor imagery and functional electrical stimulation for patients with severe upper limb paresis after stroke: a randomized controlled pilot trial. J Neuroeng Rehabil. 2024 Jan 20;21(1):10. doi: 10.1186/s12984-024-01304-1
47. Chen L, Gu B, Wang Z, et al. EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application. Front Med. 2021 Oct;15(5):740-9. doi: 10.1007/s11684-020-0794-5. Epub 2021 Jun 22.
48. Ramos-Murguialday A, Curado MR, Broetz D, et al. Brain-Machine Interface in Chronic Stroke: Randomized Trial LongTerm Follow-up. Neurorehabil Neural Repair. 2019 Mar;33(3):188-98. doi: 10.1177/1545968319827573. Epub 2019 Feb 5.
49. Ma ZZ, Wu JJ, Cao Z, et al. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J Neuroeng Rehabil. 2024 May 29;21(1):91. doi: 10.1186/s12984-024-01387-w
50. Lee SH, Kim SS, Lee BH. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial. Physiother Theory Pract. 2022 Sep;38(9):1126-34. doi: 10.1080/09593985.2020.1831114. Epub 2020 Oct 7.
51. Kim T, Kim S, Lee B. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial. Occup Ther Int. 2016 Mar;23(1):39-47. doi: 10.1002/oti.1403. Epub 2015 Aug 24.
52. Miao Y, Chen S, Zhang X, et al. BCI-Based Rehabilitation on the Stroke in Sequela Stage. Neural Plast. 2020 Dec 13;2020:8882764. doi: 10.1155/2020/8882764
53. Payton H, Soundy A. The Experience of Post-Stroke Pain and The Impact on Quality of Life: An Integrative Review. Behav Sci (Basel). 2020 Aug 7;10(8):128. doi: 10.3390/bs10080128
54. Borisova VA, Isakova EV, Kotov SV. Possibilities of the brain-computer interface in the correction of post-stroke cognitive impairments. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(12-2):60-6. doi: 10.17116/jnevro202212212260 (In Russ.).
55. Liu L, Xu M, Marshall IJ, et al. Prevalence and natural history of depression after stroke: A systematic review and meta-analysis of observational studies. PLOS Med. 2023 Mar;20(3):e1004200. doi: 10.1371/journal.pmed.1004200
Review
For citations:
Pankov MY, Kostenko EV, Petrova LV, Filippov MS. The brain-computer interface in the recovery of upper limb motor function after stroke. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2025;17(2):93-99. (In Russ.) https://doi.org/10.14412/2074-2711-2025-2-93-99