Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Multitarget transcranial magnetic theta-burst stimulation in the correction of cognitive impairment in patients with progressive multiple sclerosis

https://doi.org/10.14412/2074-2711-2025-2-36-43

Abstract

Cognitive impairment (CI) is a common symptom in multiple sclerosis (MS) that significantly impairs quality of life. Severe cognitive impairment with a multidomain phenotype is observed in progressive MS (PMS). Given the limitations of available therapeutic approaches to the treatment of CI in PMS, the investigation of transcranial magnetic stimulation (TMS) for its correction is relevant.
Objective: To investigate the safety, tolerability and efficacy of multitarget navigated TMS in PMS with CI.
Material and methods. A protocol for multitarget intermittent theta-burst stimulation (iTBS) of the left dorsolateral prefrontal and posterior parietal cortex was developed. Fifteen patients with PMS and CI were enrolled in the study: 8 patients received sham stimulation followed by active iTBS, and 7 patients received only active iTBS. Safety and tolerability were assessed by questionnaires, efficacy by neuropsychological testing and questionnaires on subjective CI and fatigue.
Results. No serious adverse events (AEs) or discontinuation of TMS were observed. Mild AEs were recorded during 39.8% of sessions and within 24 hours after 23.3% of sessions, with no statistically significant differences between sham- and active iTBS. Verbal working and short-term memory (p=0.012 and p=0.049) as well as information processing speed (p=0.026), visuospatial perception (p=0.023), subjective CI (p=0.016) and fatigue (p=0.041) improved after the active protocol. Sham-iTBS had no significant effects. Significant differences between the effects of the sham and the active protocol were only observed for verbal working memory (p=0.043).
Conclusion. Thus, this pilot study confirmed good safety and tolerability of the TMS protocol in PMS with CI. It was shown that there is a potential efficacy for verbal working and short-term memory, information processing speed, visuospatial perception, subjective CI and fatigue. The efficacy needs to be confirmed in further large studies.

About the Authors

A. Kh. Zabirova
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



I. S. Bakulin
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



A. G. Poydasheva
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



D. Yu. Lagoda
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



M. N. Zakharova
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



E. V. Gnedovskaya
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



N. A. Suponeva
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



M. A. Piradov
Scientific Center of Neurology
Russian Federation

80, Volokolamskoe Sh., Moscow 125367


Competing Interests:

There are no conflicts of interest.



References

1. Lakin L, Davis BE, Binns CC, et al. Comprehensive Approach to Management of Multiple Sclerosis: Addressing Invisible Symptoms – A Narrative Review. Neurol Ther. 2021 Jun;10(1):75-98. doi: 10.1007/s40120-021-00239-2. Epub 2021 Apr 20.

2. Ruano L, Portaccio E, Goretti B, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017 Aug;23(9):1258-67. doi: 10.1177/1352458516674367. Epub 2016 Oct 13.

3. Renner A, Baetge SJ, Filser M, et al. Characterizing cognitive deficits and potential predictors in multiple sclerosis: A large nationwide study applying Brief International Cognitive Assessment for Multiple Sclerosis in standard clinical care. J Neuropsychol. 2020 Sep;14(3):347-69. doi: 10.1111/jnp.12202. Epub 2020 Feb 13.

4. De Meo E, Portaccio E, Giorgio A, et al. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol. 2021 Apr;78(4):414-25. doi: 10.1001/jamaneurol.2020.4920

5. Hojsgaard Chow H, Schreiber K, Magyari M, et al. Progressive multiple sclerosis, cognitive function, and quality of life. Brain Behav. 2018 Jan;8(2):e00875. doi: 10.1002/brb3.875

6. Moccia M, Lanzillo R, Palladino R, et al. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult Scler. 2016 Apr;22(5):659-67. doi: 10.1177/1352458515599075. Epub 2015 Sep 11.

7. Pitteri M, Romualdi C, Magliozzi R, et al. Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Mult Scler. 2017 May;23(6):848-54. doi: 10.1177/1352458516665496. Epub 2016 Aug 15.

8. Zabirova AKh, Bakulin IS, Poydasheva AG, et al. Cognitive impairment and their treatment in patients with multiple sclerosis. Al'manakh klinicheskoi meditsiny. 2023;51(2):110-25. doi:10.18786/2072-0505-2023-51-009 (In Russ.).

9. Zhang J, Cortese R, De Stefano N, Giorgio A. Structural and Functional Connectivity Substrates of Cognitive Impairment in Multiple Sclerosis. Front Neurol. 2021 Jul;12:671894. doi: 10.3389/fneur.2021.671894

10. Rocca MA, Schoonheim MM, Valsasina P, et al. Task-and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022 Jun;35:103076. doi: 10.1016/j.nicl.2022.103076. Epub 2022 Jun 6.

11. Jandric D, Doshi A, Scott R, et al. A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis. Brain Connect. 2022 Mar;12(2):112-33. doi: 10.1089/brain.2021.0104

12. Miller E, Morel A, Redlicka J, et al. Pharmacological and Non-pharmacological Therapies of Cognitive Impairment in Multiple Sclerosis. Curr Neuropharmacol. 2018;16(4):475-83. doi: 10.2174/1570159X15666171109132650

13. Motavalli A, Majdi A, Hosseini L, et al. Pharmacotherapy in multiple sclerosis-induced cognitive impairment: A systematic review and meta-analysis. Mult Scler Relat Disord. 2020 Nov;46:102478. doi: 10.1016/j.msard.2020.102478. Epub 2020 Aug 30.

14. Chen MH, Chiaravalloti ND, DeLuca J. Neurological update: cognitive rehabilitation in multiple sclerosis. J Neurol. 2021 Dec;268(12):4908-14. doi: 10.1007/s00415-021-10618-2. Epub 2021 May 24.

15. Taylor LA, Mhizha-Murira JR, Smith L, et al. Memory rehabilitation for people with multiple sclerosis. Cochrane Database Syst Rev. 2021 Oct;10(10):CD008754. doi: 10.1002/14651858.CD008754.pub4

16. Piradov MA, Bakulin IS, Zabirova AKh, et al. Transcranial magnetic stimulation in clinical and research practice. Moscow: Goryachaya liniya – Telekom; 2024. 584 p. (In Russ.).

17. Lagoda DYu, Bakulin IS, Poydasheva AG, et al. Functional MRI-guided Repetitive Transcranial Magnetic Stimulation in Cognitive Impairment in Cerebral Small Vessel Disease. Annaly klinicheskoi i eksperimental'noi nevrologii. 2024;18(2):24-33. doi: 10.17816/ACEN.1087 (In Russ.).

18. Lanza G, Fisicaro F, Dubbioso R, et al. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci. 2022 Sep;14:995000. doi: 10.3389/fnagi.2022.995000.

19. Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020 Feb;131(2):474-528. doi: 10.1016/j.clinph.2019.11.002. Epub 2020 Jan 1.

20. Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease. Alzheimers Dement. 2020 Apr;16(4):641-50. doi: 10.1016/j.jalz.2019.08.197. Epub 2020 Jan 16.

21. Rounis E, Huang YZ. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res. 2020 Aug;238(7-8):1707-14. doi: 10.1007/s00221-020-05880-1. Epub 2020 Jul 15.

22. Wischnewski M, Schutter DJ. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul. 2015 JulAug;8(4):685-92. doi: 10.1016/j.brs.2015.03.004. Epub 2015 Mar 26.

23. Hulst HE, Goldschmidt T, Nitsche MA, et al. rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017 May;88(5):386-94. doi: 10.1136/jnnp-2016-314224. Epub 2016 Dec 14.

24. Agüera E, Caballero-Villarraso J, Feijoo M, et al. Clinical and Neurochemical Effects of Transcranial Magnetic Stimulation (TMS) in Multiple Sclerosis: A Study Protocol for a Randomized Clinical Trial. Front Neurol. 2020 Aug;11:750. doi: 10.3389/fneur.2020.00750

25. Blanchard C, De Dios Perez B, Tindall T, et al. Trial protocol: Feasibility of neuromodulation with connectivity-guided intermittent theta-burst stimulation for improving cognition in multiple sclerosis. Open Med (Wars). 2023 Sep;18(1):20230814. doi: 10.1515/med-2023-0814

26. Evdoshenko E, Laskova K, Shumilina M, et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in the Russian Population. J Int Neuropsychol Soc. 2022 May;28(5):503-10. doi: 10.1017/S1355617721000722. Epub 2021 Jun 16.

27. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971 Mar;9(1):97-113. doi: 10.1016/0028-3932(71)90067-4

28. Chung SW, Rogasch NC, Hoy KE, et al. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp. 2018 Feb;39(2):783-802. doi: 10.1002/hbm.23882. Epub 2017 Nov 9.

29. Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol. 2017 Apr;8:557. doi: 10.3389/fpsyg.2017.00557

30. Mueller ST, Piper BJ. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J Neurosci Methods. 2014 Jan;222:250-9. doi: 10.1016/j.jneumeth.2013.10.024. Epub 2013 Nov 20.

31. Haatveit BC, Sundet K, Hugdahl K, et al. The validity of d prime as a working memory index: results from the “Bergen n-back task”. J Clin Exp Neuropsychol. 2010 Oct;32(8):871-80. doi: 10.1080/13803391003596421

32. Gavrilov YV, Shkilnyuk GG, Valko PO, et al. Validation of the Russian version of the Fatigue Impact Scale and Fatigue Severity Scale in multiple sclerosis patients. Acta Neurol Scand. 2018 Nov;138(5):408-16. doi: 10.1111/ane.12993

33. Suponeva NA, Bakulin IS, Poydasheva AG, et al. Prefrontal cortex transcranial theta-burst stimulation frequency-dependent effects on cognitive functions. Vestnik RGMU. 2023;(6):60-8. doi: 10.24075/vrgmu.2023.045 (In Russ.).

34. Patel R, Silla F, Pierce S, et al. Cognitive functioning before and after repetitive transcranial magnetic stimulation (rTMS): A quantitative meta-analysis in healthy adults. Neuropsychologia. 2020 Apr;141:107395. doi: 10.1016/j.neuropsychologia.2020.107395. Epub 2020 Mar 4.

35. Senczyszyn A, Szczesniak D, Wieczorek T, et al. Improvement of working memory in older adults with mild cognitive impairment after repetitive transcranial magnetic stimulation – a randomized controlled pilot study. Front Psychiatry. 2023 Nov;14:1196478. doi: 10.3389/fpsyt.2023.1196478

36. Jia Y, Xu L, Yang K, et al. Precision Repetitive Transcranial Magnetic Stimulation Over the Left Parietal Cortex Improves Memory in Alzheimer's Disease: A Randomized, Double-Blind, Sham-Controlled Study. Front Aging Neurosci. 2021 Jun;13:693611. doi: 10.3389/fnagi.2021.693611

37. Gaede G, Tiede M, Lorenz I, et al. Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurol Neuroimmunol Neuroinflamm. 2017 Dec;5(1):e423. doi: 10.1212/NXI.0000000000000423

38. Mori F, Ljoka C, Magni E, et al. Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. J Neurol. 2011 Jul;258(7):1281-7. doi: 10.1007/s00415-011-5924-1. Epub 2011 Feb 1.

39. Korzhova J, Bakulin I, Sinitsyn D, et al. High-frequency repetitive transcranial magnetic stimulation and intermittent theta-burst stimulation for spasticity management in secondary progressive multiple sclerosis. Eur J Neurol. 2019 Apr;26(4):680-e44. doi: 10.1111/ene.13877. Epub 2019 Jan 15.

40. Matias-Guiu JA, Gonzalez-Rosa J, Hernandez MA, et al. Amantadine and/or transcranial magnetic stimulation for fatigue associated with multiple sclerosis (FETEM): study protocol for a phase 3 randomised, double-blind, cross-over, controlled clinical trial. BMJ Open. 2024 Jan;14(1):e078661. doi: 10.1136/bmjopen2023-078661


Review

For citations:


Zabirova AK, Bakulin IS, Poydasheva AG, Lagoda DY, Zakharova MN, Gnedovskaya EV, Suponeva NA, Piradov MA. Multitarget transcranial magnetic theta-burst stimulation in the correction of cognitive impairment in patients with progressive multiple sclerosis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2025;17(2):36-43. (In Russ.) https://doi.org/10.14412/2074-2711-2025-2-36-43

Views: 83


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)