Functional MRI in assessing brain cortex activation patterns in response to olfactory stimuli
https://doi.org/10.14412/2074-2711-2025-1-41-48
Abstract
Objective: quantitative assessment of the activation areas of the cerebral cortex in women and men in response to olfactory stimuli using functional magnetic resonance imaging (fMRI).
Material and methods. The study included 14 non-smoking volunteers who were right-handed from birth (8 women and 6 men; mean age – 32.7±6.4 years), without anamnestic and clinical signs of diseases of the nervous system, nasopharynx and oropharynx, and without anosmia during the COVID-19 period. fMRI was performed on a Signa PET/MR 3.0 T scanner (GE Healthcare) with a 32-channel coil. Each olfactory stimulus (lavender and pine needles) was delivered alternately from a 200 ml syringe containing cotton wool soaked in essential oil through a PERFOMA-Judkins catheter. The syringe was opened for 4 seconds for delivery, after which delivery was stopped and the catheter was aspirated to remove the residual odour. Odours were presented at 40 seconds intervals and each odour was presented 4 times. Data analysis focused on the primary olfactory cortex (POC), orbitofrontal olfactory cortex (OOC), insular cortex (IC), and motor cortex (Brodmann’s areas 4 and 6).
Results. All subjects showed activation of the POC, OOC, IC and areas 4 and 6 for both odour stimuli, with a slight dominance of the right hemisphere. Lavender odour often led to a stronger activation of the olfactory and motor cortex than pine needle odour. The individual activation map of areas 4 and 6 elicited by lavender odour was characterized by greater variability than the map for pine needle odour. The intensity of activation in response to both odours was higher in women than in men.
Conclusion. The odours of lavender and pine needles activate not only the olfactory areas of the cortex but also areas 4 and 6 and are characterized by certain interhemispheric and gender differences.
Keywords
About the Authors
M. B. DolgushinRussian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
Competing Interests:
There are no conflicts of interest
A. P. Demyanov
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
Competing Interests:
There are no conflicts of interest
M. Yu. Martynov
Russian Federation
Mikhail Yuryevich Martynov
1, Ostrovityanova St., Build. 10, Moscow, 117997
1, Ostrovityanova St., Moscow, 117997
Competing Interests:
There are no conflicts of interest
A. V. Dvoryanchikov
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
Competing Interests:
There are no conflicts of interest
E. A. Katunina
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
1, Ostrovityanova St., Moscow, 117997
Competing Interests:
There are no conflicts of interest
E. A. Malykhina
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
1, Ostrovityanova St., Moscow, 117997
Competing Interests:
There are no conflicts of interest
R. T. Tairova
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
1, Ostrovityanova St., Moscow, 117997
Competing Interests:
There are no conflicts of interest
K. A. Pritshepina
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
Competing Interests:
There are no conflicts of interest
V. V. Belousov
Russian Federation
1, Ostrovityanova St., Build. 10, Moscow, 117997
1, Ostrovityanova St., Moscow, 117997
Competing Interests:
There are no conflicts of interest
References
1. Zhang H, Ji D, Yin J, et al. Olfactory fMRI activation pattern across different concentrations changes in Alzheimer's disease. Front Neurosci. 2019 Jul 30;13:786. doi: 10.3389/fnins.2019.00786
2. Zhang H, Chung TW, Wong FK, et al. Changes in the intranetwork and internetwork connectivity of the default mode network and olfactory network in patients with COVID-19 and olfactory dysfunction. Brain Sci. 2022 Apr 18;12(4):511. doi: 10.3390/brainsci12040511
3. Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage. 2019 Oct 1;199:718-29. doi: 10.1016/j.neuroimage.2017.05.023. Epub 2017 May 12.
4. Zou LQ, van Hartevelt TJ, Kringelbach ML, et al. The neural mechanism of hedonic processing and judgment of pleasant odors: An activation likelihood estimation meta-analysis. Neuropsychology. 2016 Nov;30(8):970-9. doi: 10.1037/neu0000292. Epub 2016 May 19.
5. Uchida N, Poo C, Haddad R. Coding and transformations in the olfactory system. Annu Rev Neurosci. 2014;37:363-85. doi: 10.1146/annurev-neuro-071013-013941. Epub 2014 Jun 2.
6. Sorokowski P, Karwowski M, Misiak M, et al. Sex differences in human olfaction: a meta-analysis. Front Psychol. 2019 Feb 13;10:242. doi: 10.3389/fpsyg.2019.00242
7. Li W, Luxenberg E, Parrish T, Gottfried JA. Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron. 2006 Dec 21;52(6):1097-108. doi: 10.1016/j.neuron.2006.10.026
8. Masuo Y, Satou T, Takemoto H, Koike K. Smell and stress response in the brain: review of the connection between chemistry and neuropharmacology. Molecules. 2021 Apr 28;26(9):2571. doi: 10.3390/molecules26092571
9. Johnson BN, Mainland JD, Sobel N. Rapid olfactory processing implicates subcortical control of an olfactomotor system. J Neurophysiol. 2003 Aug;90(2):1084-94. doi: 10.1152/jn.00115.2003. Epub 2003 Apr 23.
10. Zhou G, Lane G, Cooper SL, et al. Characterizing functional pathways of the human olfactory system. Elife. 2019 Jul 24;8:e47177. doi: 10.7554/eLife.47177
11. Ciorba A, Hatzopoulos S, Cogliandolo C, et al. Functional magnetic resonance imaging in the olfactory perception of the same stimuli. Life (Basel). 2020 Dec 25;11(1):11. doi: 10.3390/life11010011
12. Zhang ZH, Liu X, Jing B, et al. Cerebellar involvement in olfaction: an fMRI study. J Neuroimaging. 2021 May;31(3):517-23. doi: 10.1111/jon.12843. Epub 2021 Mar 30.
13. Gottfried JA, Dolan RJ. The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron. 2003 Jul 17;39(2):375-86. doi: 10.1016/s0896-6273(03)00392-1
14. Plailly J, Howard JD, Gitelman DR, Gottfried JA. Attention to odor modulates thalamocortical connectivity in the human brain. J Neurosci. 2008 May 14;28(20):5257-67. doi: 10.1523/JNEUROSCI.5607-07.2008
15. Lindquist MA, Meng Loh J, Atlas LY, Wager TD. Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage. 2009 Mar;45(1 Suppl):S187-98. doi: 10.1016/j.neuroimage.2008.10.065. Epub 2008 Nov 21.
16. Salek KE, Hassan IS, Kotrotsou A, et al. Silent sentence completion shows superiority localizing Wernicke's area and activation patterns of distinct language paradigms correlate with genomics: prospective study. Sci Rep. 2017 Sep 21;7(1):12054. doi: 10.1038/s41598-017-11192-2
17. Sobel N, Prabhakaran V, Desmond JE, et al. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature. 1998 Mar 19;392(6673):282-6. doi: 10.1038/32654
18. Gottfried JA, Zald DH. On the scent of human olfactory orbitofrontal cortex: metaanalysis and comparison to non-human primates. Brain Res Brain Res Rev. 2005 Dec 15;50(2):287-304. doi: 10.1016/j.brainresrev.2005.08.004. Epub 2005 Oct 6.
19. Rolls ET, Huang CC, Lin CP, et al. Automated anatomical labelling atlas 3. Neuroimage. 2020 Feb 1;206:116189. doi: 10.1016/j.neuroimage.2019.116189. Epub 2019 Sep 12.
20. Brodmann K. Brodmann’s: localisation in the cerebral cortex. New York: Springer; 2007.
21. Fjaeldstad A, Fernandes HM, Van Hartevelt TJ, et al. Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep. 2017 Feb 14;7:42534. doi: 10.1038/srep42534
22. Wang J, Sun X, Yang QX. Early aging effect on the function of the human central olfactory system. J Gerontol A Biol Sci Med Sci. 2017 Aug 1;72(8):1007-14. doi: 10.1093/gerona/glw104
23. Su M, Wang S, Fang W, et al. Alterations in the limbic/paralimbic cortices of Parkinson's disease patients with hyposmia under restingstate functional MRI by regional homogeneity and functional connectivity analysis. Parkinsonism Relat Disord. 2015 Jul;21(7):698- 703. doi: 10.1016/j.parkreldis.2015.04.006. Epub 2015 Apr 18.
24. Steffener J, Motter JN, Tabert MH, Devanand DP. Odorant-induced brain activation as a function of normal aging and Alzheimer's disease: A preliminary study. Behav Brain Res. 2021 Mar 26;402:113078. doi: 10.1016/j.bbr.2020.113078. Epub 2021 Jan 5.
25. Yunpeng Z, Han P, Joshi A, Hummel T. Individual variability of olfactory fMRI in normosmia and olfactory dysfunction. Eur Arch Otorhinolaryngol. 2021 Feb;278(2):379-87. doi: 10.1007/s00405-020-06233-y. Epub 2020 Aug 14.
26. Kollndorfer K, Jakab A, Mueller CA, et al. Effects of chronic peripheral olfactory loss on functional brain networks. Neuroscience. 2015 Dec 3;310:589-99. doi: 10.1016/j.neuroscience.2015.09.045. Epub 2015 Sep 28.
27. Reichert JL, Postma EM, Smeets PAM, et al. Severity of olfactory deficits is reflected in functional brain networks – An fMRI study. Hum Brain Mapp. 2018 Aug;39(8):3166-77. doi: 10.1002/hbm.24067. Epub 2018 Mar 30.
28. Bogolepova IN, Malofeeva LI, Sveshnikov AV, Lovchitskaya AO. Neural organization of cortical areas as the index of inter-detained asymmetry of the brain of men and women. Asymmetry. 2017;(11):5-16 (In Russ.).
29. Zhang C, Cahill ND, Arbabshirani MR, et al. Sex and age effects of functional connectivity in early adulthood. Brain Connect. 2016 Nov;6(9):700-13. doi: 10.1089/brain.2016.0429. Epub 2016 Sep 30.
30. Kong XZ, Mathias SR, Guadalupe T, et al; ENIGMA Laterality Working Group. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5154-E5163. doi: 10.1073/pnas.1718418115. Epub 2018 May 15.
31. Yousem DM, Maldjian JA, Siddiqi F, et al. Gender effects on odor-stimulated functional magnetic resonance imaging. Brain Res. 1999 Feb 13;818(2):480-7. doi: 10.1016/s0006-8993(98)01276-1.
Review
For citations:
Dolgushin MB, Demyanov AP, Martynov MY, Dvoryanchikov AV, Katunina EA, Malykhina EA, Tairova RT, Pritshepina KA, Belousov VV. Functional MRI in assessing brain cortex activation patterns in response to olfactory stimuli. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2025;17(1):41-48. (In Russ.) https://doi.org/10.14412/2074-2711-2025-1-41-48