Нейрогуморальные ворота для вхождения коронавируса в центральную нервную систему через «решето» черепа
https://doi.org/10.14412/2074-2711-2023-6-115-121
Аннотация
Недавние исследования показали, что в головном мозге существуют различные дренажные системы. Дренаж цереброспинальной и интерстициальной жидкостей приводит к образованию внутримозговой (внутричерепной) лимфы, которая становится частью глимфатической системы. Позже глимфатическая система была разделена на перии параваскулярные пространства, хотя их наличие все еще не доказано. В статье представлены данные об анатомии решетчатой пластинки, ее возрастных изменениях, особенностях лимфатической системы и о теории существования глимфатических сосудов в данной области. Также мы выдвинули гипотезу, что помимо классической точки зрения, предполагающей проникновение вирусов в центральную нервную систему (ЦНС) через гематоэнцефалический барьер или с помощью иммунных клеток, существуют иные пути проникновения возбудителя, например посредствам глимфатической системы. Рассматриваются возможные пути движения цереброспинальной и интерстициальной жидкостей по структурам нервной и других систем. Решетчатая пластинка рассматривается в качестве возможных входных ворот в ЦНС для вирусов, в частности для вируса SARS-CoV-2. В нашем обзоре мы изучили вероятные механизмы распространения SARS-CoV-2 в ЦНС, а также возможные последствия перенесенного вирусного заболевания.
Ключевые слова
Об авторах
В. Н. НиколенкоРоссия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
М. В. Оганесян
Россия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
Н. А. Ризаева
Россия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
А. Т. Никитина
Россия
Арина Тимофеевна Никитина
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
М. П. Павлив
Россия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
А. В. Полякова
Россия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
Е. А. Созонова
Россия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
М. Н. Хабибов
Россия
119048, Москва, ул. Трубецкая, 8, стр. 2
Конфликт интересов:
Конфликт интересов отсутствует
Список литературы
1. Jackowski C, Bolliger S, Thali MJ. Common and unexpected findings in mummies from ancient Egypt and South America as revealed by CT. Radiographics. 2008 SepOct;28(5):1477-92. doi: 10.1148/rg.285075112
2. Viale GL, Deseri S, Gennaro S, Sehrbundt E. A craniocerebral infectious disease: case report on the traces of Hippocrates. Neurosurgery. 2002 Jun;50(6):1376-8; discussion 1378-9. doi: 10.1097/00006123-200206000-00034
3. Bucchieri F, Farina F, Zummo G, Cappello F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015 Nov;227(5):702-3. doi: 10.1111/joa.12381. Epub 2015 Sep 18.
4. Schwalbe G. Der Arachnoidalraum, ein Lymphraum und sein Zusammenhang mit dem Perichoroidalraum. Zentralblatt für medizinische Wissenschaft. 1869;7:465-7.
5. Andres KH, von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl). 1987;175(3):289-301. doi: 10.1007/BF00309843
6. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992 Dec;13(12):507-12. doi: 10.1016/01675699(92)90027-5
7. Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993 Dec;19(6):480-8. doi: 10.1111/j.1365-2990.1993.tb00476.x
8. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015 Jun 29;212(7):991-9. doi: 10.1084/jem.20142290. Epub 2015 Jun 15.
9. Semyachkina-Glushkovskaya O, Postnov D, Kurths J. Blood{Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne's Thread in Labyrinths of Hypotheses. Int J Mol Sci. 2018 Nov 30;19(12):3818. doi: 10.3390/ijms19123818
10. Engelhardt B, Carare RO, Bechmann I, et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016 Sep;132(3):317-38. doi: 10.1007/s00401-016-1606-5. Epub 2016 Aug 13.
11. Van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015 Jan;235(2):277-87. doi: 10.1002/path.4461
12. Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. J Neurovirol. 2005 Apr;11(2):129-37. doi: 10.1080/13550280590922793
13. Vaira LA, Hopkins C, Petrocelli M, et al. Do olfactory and gustatory psychophysical scores have prognostic value in COVID-19 patients? A prospective study of 106 patients. J Otolaryngol Head Neck Surg. 2020 Aug 6;49(1):56. doi: 10.1186/s40463-020-00449-y
14. Vasvari G, Reisch R, Patonay L. Surgical anatomy of the cribriform plate and adjacent areas. Minim Invasive Neurosurg. 2005 Feb;48(1):25-33. doi: 10.1055/s-2004-830180
15. Kawahara G, Matsuda M, Sugiyama K, et al. [Studies on the Japanese lamina cribrosa – statistical observation on its shape, number of pores and area]. Zasshi Tokyo Ika Daigaku. 1968 Mar;26(1):185-94 (In Jap.).
16. Williams PL, Bannister LH, Berry MM, et аl. Gray's Anatomy. 38th ed. Edinburgh: Churchill Livingston; 1995.
17. Kainz J, Stammberger H. The Roof of the Anterior Ethmoid: A Place of Least Resistance in the Skull Base. Am J Rhinol. 1989 Sep 1;3(4):191-9.
18. Stieda L. Über den Sulcus ethmoidalis der Lamina cribrosa des Siebbeins. Anat Anz. 1891;8:232-7.
19. Mihalkovics G. Anatomie und Entwicklungsgeschickte der Nase und ihrer Nebenhöhlen. In: Handbuch der Laryngologie und Rhinologie. Wien; 1896.
20. Wolfgruber H. Über die Lamina cribrosa des Ethmoids. Z Laryngol Rhinol Otol Ihre Grenzgeb. 1968;47:522-9.
21. Lauralee S. Human Physiology from Cells to Systems. 8th ed. Scarborough, Canada: Nelson Education; 2015.
22. Nikolenko VN, Oganesyan MV, Vovkogon AD, et al. Current Understanding of Central Nervous System Drainage Systems: Implications in the Context of Neurodegenerative Diseases. Curr Neuropharmacol. 2020;18(11):1054-63. doi: 10.2174/1570159X17666191113103850
23. Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res. 2016 Dec;366(3):667-77. doi: 10.1007/s00441-016-2493-8. Epub 2016 Sep 6.
24. Бурдей ГД. Об изменчивости сосцевидных выпускников и яремных отверстий. В сб.: Труды Кафедры нормальной анатомии Саратовского государственного медицинского института. Вып. 1. Вопросы изменчивости костной и сосудистой систем человека. Саратов; 1955. С. 23-36.
25. Должиков АА, Бобынцев ИИ, Белых АЕ и др. Патогенез нейродегенеративной патологии и новые концепции транспортно-метаболических систем головного мозга и глаза. Курский научно-практический вестник «Человек и его здоровье». 2020;(1):43-57. doi: 10.21626/vestnik/2020-1/06
26. Лобзин ВЮ, Колмакова КА, Емелин АЮ, Лапина АВ. Глимфатическая система мозга и ее роль в патогенезе болезни Альцгеймера. Вестник Российской военно-медицинской академии. 2019;1(65):230-6.
27. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012 Aug 15;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
28. Николенко ВН, Оганесян МВ, Яхно НН и др. Глимфатическая система головного мозга: функциональная анатомия и клинические перспективы. Неврология, нейропсихиатрия, психосоматика. 2018;10(4):94-100. doi: 10.14412/2074-2711-2018-4-94-100
29. Bedussi B, van der Wel NN, de Vos J, et al. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: A single compartment with preferential pathways. J Cereb Blood Flow Metab. 2017 Apr;37(4):1374-85. doi: 10.1177/0271678X16655550. Epub 2016 Jan 1.
30. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978-1-4939-2438-7_1
31. Allen AM et al. Neuronal angiotensin. In: Squire LR, ed. Encyclopedia of Neuroscience. New York: Academic Press; 2009. P. 697-702.
32. Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci. 2020 Jun;41(6):1329-37. doi: 10.1007/s10072-020-04469-4. Epub 2020 May 18.
33. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci. 2020 Jul;77:8-12. doi: 10.1016/j.jocn.2020.05.017. Epub 2020 May 6.
34. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020 Jun;92(6):552-5. doi: 10.1002/jmv.25728. Epub 2020 Mar 11.
35. Chen BP, Lane TE. Lack of nitric oxide synthase type 2 (NOS2) results in reduced neuronal apoptosis and mortality following mouse hepatitis virus infection of the central nervous system. J Neurovirol. 2002 Feb;8(1):58-63. doi: 10.1080/135502802317247820
36. Berger JR. COVID-19 and the nervous system. J Neurovirol. 2020 Apr;26(2):143-8. doi: 10.1007/s13365-020-00840-5. Epub 2020 May 23.
37. Swanson PA 2nd, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol. 2015 Apr;11:44-54. doi: 10.1016/j.coviro.2014.12.009. Epub 2015 Feb 12.
38. Tyler KL. Acute Viral Encephalitis. N Engl J Med. 2018 Aug 9;379(6):557-66. doi: 10.1056/NEJMra1708714
39. Forrester JV, McMenamin PG, Dando SJ. CNS infection and immune privilege. Nat Rev Neurosci. 2018 Nov;19(11):655-71. doi: 10.1038/s41583-018-0070-8
40. McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol. 2011 May;11(5):318-29. doi: 10.1038/nri2971
41. Grass GD, Toole BP. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep. 2015 Nov 24;36(1):e00283. doi: 10.1042/BSR20150256
42. Kanyenda LJ, Verdile G, Boulos S, et al. The dynamics of CD147 in Alzheimer's disease development and pathology. J Alzheimers Dis. 2011;26(4):593-605. doi: 10.3233/JAD-2011110584
43. Murphy C, Doty RL, Duncan HJ. Clinical disorders of olfaction. In: Handbook of Olfaction and Gustation. New York; Basel: Dekker; 2003. P. 461-78.
44. Вознесенская АЕ, Ключникова МА, Родионова ЕИ, Вознесенская ВВ. Расстройства обоняния и их связь с нейродегенеративными заболеваниями. Сенсорные системы. 2011;25(1):17-31.
45. Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr Drug Targets. 2017;18(11):1301-13. doi: 10.2174/1389450117666160727142401
46. Barrios AW, Nunez G, Sanchez Quinteiro P, Salazar I. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front Neuroanat. 2014 Jul 14;8:63. doi: 10.3389/fnana.2014.00063
47. Chigr F, Merzouki M, Najimi M. Comment on “The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020 Jul;92(7):703-4. doi: 10.1002/jmv.25960. Epub 2020 May 22.
48. Patterson CE, Lawrence DM, Echols LA, Rall GF. Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent. J Virol. 2002 May;76(9):4497506. doi: 10.1128/jvi.76.9.4497-4506.2002
49. Tishon A, Lewicki H, Andaya A, et. al. CD4 T cell control primary measles virus infection of the CNS: Regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective. J Virol. 2006 Mar; 30;347(1):234-45. doi: 10.1016/j.virol.2006.01.050
50. Liu T, Khanna KM, Carriere BN, Hendricks RL. Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol. 2001 Nov;75(22):11178-84. doi: 10.1128/JVI.75.22.11178-11184.2001
51. Cantin EM, Hinton DR, Chen J, Openshaw H. Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol. 1995 Aug;69(8):4898-905. doi: 10.1128/JVI.69.8.4898-4905.1995
52. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001;19:65-91. doi: 10.1146/annurev.immunol.19.1.65
53. Gilles PN, Fey G, Chisari FV. Tumor necrosis factor alpha negatively regulates hepatitis B virus gene expression in transgenic mice. J Virol. 1992 Jun;66(6):3955-60. doi: 10.1128/JVI.66.6.3955-3960.1992
54. Lauterbach H, Zuniga EI, Truong P, et al. Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J Exp Med. 2006 Aug 7;203(8):196375. doi: 10.1084/jem.20060039. Epub 2006 Jul 17.
55. Stevens JC, Dadarwala AD. Variability of olfactory threshold and its role in assessment of aging. Percept Psychophys. 1993 Sep;54(3):296-302. doi: 10.3758/bf03205264. Erratum in: Percept Psychophys. 1993 Oct;54(4):562.
56. Doty RL. Olfaction. Annu Rev Psychol. 2001;52:423-52. doi: 10.1146/annurev.psych.52.1.423
57. Kalmey JK, Thewissen JG, Dluzen DE. Age-related size reduction of foramina in the cribriform plate. Anat Rec. 1998 Jul;251(3):326-9. doi: 10.1002/(SICI)10970185(199807)251:3<326::AIDAR7>3.0.CO;2-T
Рецензия
Для цитирования:
Николенко ВН, Оганесян МВ, Ризаева НА, Никитина АТ, Павлив МП, Полякова АВ, Созонова ЕА, Хабибов МН. Нейрогуморальные ворота для вхождения коронавируса в центральную нервную систему через «решето» черепа. Неврология, нейропсихиатрия, психосоматика. 2023;15(6):115-121. https://doi.org/10.14412/2074-2711-2023-6-115-121
For citation:
Nikolenko VN, Oganesyan MV, Rizaeva NA, Nikitina AT, Pavliv MP, Polyakova АV, Sozonova EA, Khabibov MN. Neurohumoral gate for the entry of coronavirus into the central nervous system through the cribriform plate of the skull. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2023;15(6):115-121. (In Russ.) https://doi.org/10.14412/2074-2711-2023-6-115-121