Preview

Неврология, нейропсихиатрия, психосоматика

Расширенный поиск

Роль клеточного иммунитета и коэффициентов системного воспаления в механизмах формирования психических расстройств

https://doi.org/10.14412/2074-2711-2023-5-72-78

Аннотация

В настоящее время известно, что воспалительные механизмы участвуют в нейрональном повреждении и формировании сопряженных психических нарушений, однако большинство работ было сосредоточено главным образом на цитокинах и других маркерах воспаления, являющихся трудно воспроизводимыми и мало экономически выгодными для использования в клинической практике. В то же время другими крайне важными показателями системного воспалительного процесса являются циркулирующие клетки крови иизменения их числа, состава исоотношения. Всоматическом звене уже используются гематологические коэффициенты системного воспаления (ГКСВ): нейтрофильно-лимфоцитарное, моноцитарно-лимфоцитарное и тромбоцитарно-лимфоцитарное соотношения, а также индексы системного иммунного воспаления и системной воспалительной реакции. В рамках психопатологии ГКСВ требуют дополнительного изучения, что заставляет подробнее обратить внимание на возможные механизмы, лежащие в основе их изменений. В статье содержатся данные о вкладе каждого отдельного клеточного элемента в механизм нейровоспаления и нейродегенерации, а также их роли в формировании психопатологических процессов.

Об авторах

А. П. Горбунова
ФГБУ «Национальный медицинский исследовательский центр им. В.М. Бехтерева» Минздрава России
Россия

192019, Санкт-Петербург, ул. Бехтерева, 3


Конфликт интересов:

Конфликт интересов отсутствует



Г. В. Рукавишников
ФГБУ «Национальный медицинский исследовательский центр им. В.М. Бехтерева» Минздрава России
Россия

Григорий Викторович Рукавишников

192019, Санкт-Петербург, ул. Бехтерева, 3


Конфликт интересов:

Конфликт интересов отсутствует



Е. Д. Касьянов
ФГБУ «Национальный медицинский исследовательский центр им. В.М. Бехтерева» Минздрава России
Россия

192019, Санкт-Петербург, ул. Бехтерева, 3


Конфликт интересов:

Конфликт интересов отсутствует



Г. Э. Мазо
ФГБУ «Национальный медицинский исследовательский центр им. В.М. Бехтерева» Минздрава России
Россия

192019, Санкт-Петербург, ул. Бехтерева, 3


Конфликт интересов:

Конфликт интересов отсутствует



Список литературы

1. Williams JA, Burgess S, Suckling J, et al. Inflammation and Brain Structure in Schizophrenia and Other Neuropsychiatric Disorders: A Mendelian Randomization Study. JAMA Psychiatry. 2022;79(5):498-507. doi: 10.1001/jamapsychiatry.2022.0407

2. Bulut NS, Yorguner N, Carkaxhiu Bulut G. The severity of inflammation in major neuropsychiatric disorders: comparison of neutrophil-lymphocyte and platelet-lymphocyte ratios between schizophrenia, bipolar mania, bipolar depression, major depressive disorder, and obsessive compulsive disorder. Nord J Psychiatry. 2021;75(8):624-32. doi: 10.1080/08039488.2021.1919201

3. Bhattacharya A, Derecki NC, Lovenberg TW, Drevets WC. Role of neuroimmunological factors in the pathophysiology of mood disorders. Psychopharmacology (Berl). 2016;233(9):1623-36. doi: 10.1007/s00213-0164214-0

4. Inaltekin A, Yagci I. Evaluation of Simple Markers of Inflammation and Systemic Immune Inflammation Index in Schizophrenia, Bipolar Disorder Patients and Healthy Controls. Turk Psikiyatri Derg. 2023 Spring;34(1):11-5 (In Engl., Turkish). doi: 10.5080/u26248

5. Zahorec R. Ratio of neutrophil to lymphocyte counts – rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5-14.

6. Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford). 2010;49(9):1618-31. doi: 10.1093/rheumatology/keq045

7. Singh D, Guest PC, Dobrowolny H, et al. Changes in leukocytes and CRP in different stages of major depression. J Neuroinflammation. 2022 Apr 4;19(1):74. doi: 10.1186/s12974-022-02429-7

8. Holmes C, Cunningham C, Zotova E, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology. 2011;77(3):212-8. doi: 10.1212/WNL.0b013e318225ae07

9. Cowburn AS, Deighton J, Walmsley SR, Chilvers ER. The survival effect of TNF-alpha in human neutrophils is mediated via NF-kappa B-dependent IL-8 release. Eur J Immunol. 2004;34(6):1733-43. doi: 10.1002/eji.200425091

10. Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348-64. doi: 10.1080/10715760902751902

11. Ceylan MF, Tural Hesapcioglu S, Kanoglu Yüksekkaya S, et al. Changes in neurofilament light chain protein (NEFL) in children and adolescents with Schizophrenia and Bipolar Disorder: Early period neurodegeneration. J Psychiatr Res. 2023;161:342-7. doi: 10.1016/j.jpsychires.2023.03.027

12. Ziv Y, Schwartz M. Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun. 2008;22(2):167-76. doi: 10.1016/j.bbi.2007.08.006

13. Moalem G, Leibowitz-Amit R, Yoles E, et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med. 1999;5(1):49-55. doi: 10.1038/4734

14. Yoles E, Hauben E, Palgi O, et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci. 2001;21(11):3740-8. doi: 10.1523/JNEUROSCI.21-11-03740.2001. Erratum in: J Neurosci. 2001 Aug 1;21(15):1a.

15. Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27(7):123051. doi: 10.1097/00003246-199907000-00002

16. Szuster-Ciesielska A, Slotwinska M, Stachura A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):686-94. doi: 10.1016/j.pnpbp.2007.11.012

17. Toben C, Baune BT. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes. J Neuroimmune Pharmacol. 2015;10(4):595-609. doi: 10.1007/s11481-015-9620-2

18. Hong S, Kim EJ, Lee EJ, et al. TNF-α confers resistance to Fas-mediated apoptosis in rheumatoid arthritis through the induction of soluble Fas. Life Sci. 2015;122:37-41. doi: 10.1016/j.lfs.2014.12.008

19. Cosyns P, Maes M, Vandewoude M, et al. Impaired mitogen-induced lymphocyte responses and the hypothalamic-pituitary-adrenal axis in depressive disorders. J Affect Disord. 1989;16(1):41-8. doi: 10.1016/01650327(89)90054-2

20. Bauer ME, Papadopoulos A, Poon L, et al. Dexamethasone-induced effects on lymphocyte distribution and expression of adhesion molecules in treatment-resistant depression. Psychiatry Res. 2002;113(1-2):1-15. doi: 10.1016/s0165-1781(02)00243-3

21. Pace TW, Miller AH. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci. 2009 Oct;1179:86-105. doi: 10.1111/j.17496632.2009.04984.x

22. Liu YJ, Guo DW, Tian L, et al. Peripheral T cells derived from Alzheimer's disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging. 2010 Feb;31(2):175-88. doi: 10.1016/j.neurobiolaging.2008.03.024

23. Sayed A, Bahbah EI, Kamel S, et al. The neutrophil-to-lymphocyte ratio in Alzheimer's disease: Current understanding and potential applications. J Neuroimmunol. 2020;349:577398. doi: 10.1016/j.jneuroim.2020.577398

24. Cardone J, Le Friec G, Vantourout P, et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol. 2010;11(9):862-71. doi: 10.1038/ni.1917

25. Anisman H, Ravindran AV, Griffiths J, Merali Z. Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Mol Psychiatry. 1999;4(2):182-8. doi: 10.1038/sj.mp.4000436

26. Horstman LL, Jy W, Ahn YS, et al. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation. 2010 Feb 3;7:10. doi: 10.1186/1742-2094-7-10

27. Ziegelstein RC, Parakh K, Sakhuja A, Bhat U. Platelet function in patients with major depression. Intern Med J. 2009;39(1):38-43. doi: 10.1111/j.1445-5994.2008.01794.x

28. Palmar M, Marcano A, Castejon O. Fine structural alterations of blood platelets in depression. Biol Psychiatry. 1997;42(10):9658. doi: 10.1016/S0006-3223(97)00348-X

29. Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993;60(6):2319-22. doi: 10.1111/j.14714159.1993.tb03522.x

30. Herr N, Bode C, Duerschmied D. The Effects of Serotonin in Immune Cells. Front Cardiovasc Med. 2017 Jul 20;4:48. doi: 10.3389/fcvm.2017.00048. eCollection 2017.

31. Kusumi I, Koyama T, Yamashita I. Serotonin-induced platelet intracellular calcium mobilization in depressed patients. Psychopharmacology (Berl). 1994;113(3-4):3227. doi: 10.1007/BF02245204

32. Ellis PM, Salmond C. Is platelet imipramine binding reduced in depression? A meta-analysis. Biol Psychiatry. 1994;36(5):2929. doi: 10.1016/0006-3223(94)90626-2

33. D'haenen H, De Waele M, Leysen JE. Platelet 3H-paroxetine binding in depressed patients. Psychiatry Res. 1988;26(1):11-7. doi: 10.1016/0165-1781(88)90082-0

34. Garcia-Sevilla JA, Zis AP, Hollingsworth PJ, et al. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment. Arch Gen Psychiatry. 1981;38(12):132733. doi: 10.1001/archpsyc.1981.01780370029003

35. Garcia-Sevilla JA, Padro D, Giralt MT, et al. Alpha 2-adrenoceptor-mediated inhibition of platelet adenylate cyclase and induction of aggregation in major depression. Effect of long-term cyclic antidepressant drug treatment. Arch Gen Psychiatry. 1990;47(2):125-32. doi: 10.1001/archpsyc.1990.01810140025005

36. Takahashi Y, Yu Z, Sakai M, Tomita H. Linking Activation of Microglia and Peripheral Monocytic Cells to the Pathophysiology of Psychiatric Disorders. Front Cell Neurosci. 2016 Jun 3;10:144. doi: 10.3389/fncel.2016.00144

37. Simon MS, Schiweck C, Arteaga-Henriquez G, et al. Monocyte mitochondrial dysfunction, inflammaging, and inflammatory pyroptosis in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110391. doi: 10.1016/j.pnpbp.2021.110391

38. Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol. 2014 Oct 17;5:514. doi: 10.3389/fimmu.2014.00514. eCollection 2014.

39. Lampiasi N, Bonaventura R, Deidda I, et al. Inflammation and the Potential Implication of Macrophage-Microglia Polarization in Human ASD: An Overview. Int J Mol Sci. 2023 Jan 31;24(3):2703. doi: 10.3390/ijms24032703

40. Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron. 2019 Apr 3;102(1):75-90. doi: 10.1016/j.neuron.2019.03.013

41. Kartal O, Kartal AT. Value of neutrophil to lymphocyte and platelet to lymphocyte ratios in pneumonia. Bratisl Lek Listy. 2017;118(9):513-6. doi: 10.4149/BLL_2017_099

42. Zheng HH, Xiang Y, Wang Y, et al. Clinical value of blood related indexes in the diagnosis of bacterial infectious pneumonia in children. Transl Pediatr. 2022;11(1):114-9. doi: 10.21037/tp-21-568

43. Guthrie GJ, Charles KA, Roxburgh CS, et al. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88(1):218-30. doi: 10.1016/j.critrevonc.2013.03.010

44. Zhao CN, Mao YM, Wang P, et al. Lack of association between mean platelet volume and disease activity in systemic lupus erythematosus patients: a systematic review and metaanalysis. Rheumatol Int. 2018;38(9):1635-41. doi: 10.1007/s00296-018-4065-6

45. Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des. 2011;17(1):47-58. doi: 10.2174/138161211795049804

46. Mazza MG, Lucchi S, Tringali AGM, et al. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):229-36. doi: 10.1016/j.pnpbp.2018.03.012

47. Inanli I, Aydin M, Caliskan AM, Eren I. Neutrophil/lymphocyte ratio, monocyte/lymphocyte ratio, and mean platelet volume as systemic inflammatory markers in different states of bipolar disorder. Nord J Psychiatry. 2019;73(6):372-9. doi: 10.1080/08039488.2019.1640789

48. Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948;29(1):58-69.

49. Andersson PB, Perry VH, Gordon S. The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience. 1992;48(1):169-86. doi: 10.1016/0306-4522(92)90347-5

50. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 2005;26(9):48595. doi: 10.1016/j.it.2005.07.004

51. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992;13(12):507-12. doi: 10.1016/01675699(92)90027-5

52. Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11-6. doi: 10.1016/j.bbi.2013.04.002

53. Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B. Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers. Int J Mol Sci. 2019 Oct 29;20(21):5372. doi: 10.3390/ijms20215372

54. Cugurra A, Mamuladze T, Rustenhoven J, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373(6553):eabf7844. doi: 10.1126/science.abf7844

55. Degraff Z, Souza GS, Santos NA, et al. Brain atrophy and cognitive decline in bipolar disorder: Influence of medication use, symptomatology and illness duration. J Psychiatr Res. 2023;163:421-9. doi: 10.1016/j.jpsychires.2023.05.074

56. Leite Dantas R, Freff J, Ambree O, et al. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells. 2021 Apr 19;10(4):941. doi: 10.3390/cells10040941

57. Tan EYL, Köhler S, Hamel REG, et al. Depressive Symptoms in Mild Cognitive Impairment and the Risk of Dementia: A Systematic Review and Comparative MetaAnalysis of Clinical and Community-Based Studies. J Alzheimers Dis. 2019;67(4):1319-29. doi: 10.3233/JAD-180513

58. Wang S, Mao S, Xiang D, Fang C. Association between depression and the subsequent risk of Parkinson's disease: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:186-92. doi: 10.1016/j.pnpbp.2018.05.025

59. Hamelin L, Lagarde J, Dorothee G, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer's disease. Brain. 2018;141(6):1855-70. doi: 10.1093/brain/awy079

60. Ghadery C, Koshimori Y, Christopher L, et al. The Interaction Between Neuroinflammation and β-Amyloid in Cognitive Decline in Parkinson's Disease. Mol Neurobiol. 2020;57(1):492-501. doi: 10.1007/s12035-019-01714-6


Рецензия

Для цитирования:


Горбунова АП, Рукавишников ГВ, Касьянов ЕД, Мазо ГЭ. Роль клеточного иммунитета и коэффициентов системного воспаления в механизмах формирования психических расстройств. Неврология, нейропсихиатрия, психосоматика. 2023;15(5):72-78. https://doi.org/10.14412/2074-2711-2023-5-72-78

For citation:


Gorbunova AP, Rukavishnikov GV, Kasyanov ED, Mazo GE. The role of cellular immunity and systemic inflammation indices in the pathogenetic mechanisms of mental disorders. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2023;15(5):72-78. (In Russ.) https://doi.org/10.14412/2074-2711-2023-5-72-78

Просмотров: 441


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)