Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Parkinson’s disease. Focus on early stages

https://doi.org/10.14412/2074-2711-2023-3-95-103

Abstract

The review presents current data on the peculiarities of the neurodegenerative process in the early stages of Parkinson’s disease (PD) and considers the hypothesis of the presence of body-first and brain-first subtypes of the disease onset. The earliest manifestations of the disease include symptoms such as parasomnia, constipation, hyposmia, anxiety-depressive disorder, daytime sleepiness, color perception changes, cognitive dysfunction, and mild motor manifestations. The diagnosis of PD can be made when characteristic motor manifestations occur: hypokinesia, rest tremor, muscle rigidity. Substantia nigra ultrasound, magnetic resonance imaging in SWI mode, and functional neuroimaging methods are used as confirmatory methods. The approach to the treatment of early stages of PD is age dependent. Patients over 70 years of age are recommended to start therapy with levodopa; younger patients – with dopamine receptor agonists (ADR), amantadines, MAO-B inhibitors. The mechanisms of ADR action, the possibility of their influence on the motor and non-motor symptoms of PD are analyzed. A special place is given to piribedil, which, due to the dual mechanism of action, has a positive effect on cognitive functions, depression, apathy, as well as a minimal effect on daytime sleepiness.

About the Authors

E. A. Katunina
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Elena Anatolyevna Katunina  - Department of Neurology, Neurosurgery, and Medical Genetics N.I. Pirogov RNRMU; Department of Neurodegenerative Diseases FCBN.

1, Ostrovityanovа St., Moscow 117997; 1, Ostrovityanovа St., Build 10, Moscow 117513


Competing Interests:

The conflict of interest has not affected the results of the investigation



Z. A. Zalyalova
The conflict of interest has not affected the results of the investigation
Russian Federation

49, Butlerovа St., Kazan 420012; 65, Nikolayа Ershovа St., Kazan 420061


Competing Interests:

The conflict of interest has not affected the results of the investigation



D. V. Pokhabov
V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia; Federal Siberian Research Clinical Center, FMBA of Russia
Russian Federation

Department of Nervous System Diseases V.F. Voyno-Yasenetsky Krasnoyarsk SMU; Center of innovative neurology, extrapyramidal diseases and botulinum therapy, FSR CC, FMBA of Russia.

1, Partisanа Zheleznyakа St., Krasnoyarsk 660022; 26, Kolomenskaya St., Krasnoyarsk 660037


Competing Interests:

The conflict of interest has not affected the results of the investigation



M. Z. Ivanova
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Department of Neurology, Neurosurgery, and Medical Genetics N.I. Pirogov RNRMU; Department of Neurodegenerative Diseases FCBN.

1, Ostrovityanovа St., Moscow 117997; 1, Ostrovityanovа St., Build 10, Moscow 117513


Competing Interests:

The conflict of interest has not affected the results of the investigation



A. M. Semenova
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Department of Neurology, Neurosurgery, and Medical Genetics N.I. Pirogov RNRMU; Department of Neurodegenerative Diseases FCBN.

1, Ostrovityanovа St., Moscow 117997; 1, Ostrovityanovа St., Build 10, Moscow 117513


Competing Interests:

The conflict of interest has not affected the results of the investigation



References

1. Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017 Aug;124(8):901-5. doi: 10.1007/s00702-017-1686-y. Epub 2017 Feb 1.

2. Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003 MarApr;24(2):197-211. doi: 10.1016/s01974580(02)00065-9

3. Pinter B, Diem-Zangerl A, Wenning GK, et al. Mortality in Parkinson’s disease: a 38-year follow-up study. Mov Disord. 2015 Feb;30(2):266-9. doi: 10.1002/mds.26060. Epub 2014 Dec 1. Erratum in: Mov Disord. 2017 Jan;32(1):178.

4. Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007 Jan 30;68(5):384-6. doi: 10.1212/01.wnl.0000247740.47667.03. Epub 2006 Nov 2.

5. Lunati A, Lesage S, Brice A. The genetic landscape of Parkinson’s disease. Rev Neurol (Paris). 2018 Nov;174(9):628-43. doi: 10.1016/j.neurol.2018.08.004. Epub 2018 Sep 21.

6. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007 Dec;33(6):599-614. doi: 10.1111/j.13652990.2007.00874.x. Epub 2007 Oct 24.

7. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003 May;110(5):517-36. doi: 10.1007/s00702-002-0808-2

8. Borghammer P. How does Parkinson’s disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord. 2018 Jan;33(1):4857. doi: 10.1002/mds.27138. Epub 2017 Aug 26.

9. Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014 Dec;128(6):80520. doi: 10.1007/s00401-014-1343-6. Epub 2014 Oct 9.

10. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016 Jun;79(6):940-9. doi: 10.1002/ana.24648. Epub 2016 Apr 9.

11. Pan-Montojo F, Anichtchik O, Dening Y, et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One. 2010 Jan 19;5(1):e8762. doi: 10.1371/journal.pone.0008762

12. Svensson E, Horvath-Puho E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015 Oct;78(4):522-9. doi: 10.1002/ana.24448. Epub 2015 Jul 17.

13. Liu B, Fang F, Pedersen NL, et al. Vagotomy and Parkinson disease: A Swedish register-based matched-cohort study. Neurology. 2017 May 23;88(21):1996-2002. doi: 10.1212/WNL.0000000000003961. Epub 2017 Apr 26.

14. Lionnet A, Leclair-Visonneau L, Neunlist M, et al. Does Parkinson’s disease start in the gut? Acta Neuropathol. 2018 Jan;135(1):1-12. doi: 10.1007/s00401-0171777-8. Epub 2017 Oct 16.

15. Gjerloff T, Fedorova T, Knudsen K, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain. 2015 Mar;138(Pt 3):653-63. doi: 10.1093/brain/awu369. Epub 2014 Dec 23.

16. Knudsen K, Fedorova TD, Hansen AK, et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 2018 Jul;17(7):618-28. doi: 10.1016/S14744422(18)30162-5. Epub 2018 Jun 1.

17. Iranzo A, Fernandez-Arcos A, Tolosa E, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One. 2014 Feb 26;9(2):e89741. doi: 10.1371/journal.pone.0089741

18. Miyamoto T, Miyamoto M, Inoue Y, et al. Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Neurology. 2006 Dec 26;67(12):2236-8. doi: 10.1212/01.wnl.0000249313.25627.2e

19. Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord. 2010 May;16(4):252-5. doi: 10.1016/j.parkreldis.2009.12.010. Epub 2010 Jan 25.

20. Orimo S, Yogo M, Nakamura T, et al. (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res Rev. 2016 Sep;30:122-33. doi: 10.1016/j.arr.2016.01.001. Epub 2016 Feb 2.

21. Knudsen K, Fedorova TD, Horsager J, et al. Asymmetric Dopaminergic Dysfunction in Brain-First versus Body-First Parkinson’s Disease Subtypes. J Parkinsons Dis. 2021;11(4):1677-87. doi: 10.3233/JPD-212761

22. Horsager J, Andersen KB, Knudsen K, et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain. 2020 Oct 1;143(10):3077-88. doi: 10.1093/brain/awaa238

23. Borghammer P. The α-synuclein origin and Connectome Model (SOC model) of Parkinson’s disease: Explaining motor asymmetry, non-motor phenotypes, and cognitive decline. J Parkinson’s Dis. 2021;11(2):455-74. doi: 10.3233/JPD-202481

24. Berg D, Postuma RB, Adler CH, et al. MDS research criteria for Prodromal Parkinson’s disease. Mov Disord. 2015 Oct;30(12):1600-11. doi: 10.1002/mds.26431

25. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015 Oct;30(12):1591-601. doi: 10.1002/mds.26424

26. Illarioshkin SN, Levin OS, eds. Rukovodstvo po diagnostike i lecheniyu bolezni Parkinsona [Guidelines for the diagnosis and treatment of Parkinson’s disease]. Moscow: IPK ParetoPrint; 2017 (In Russ.).

27. Selikhova MV, Katunina EA, Whone A. PET and SPECT in the assessment of monoaminergic brain systems in extrapyramidal disorders. Annaly klinicheskoy i eksperimental’noy nevrologii = Annals of Clinical and Experimental Neurology. 2019;13(2):69-78. doi: 10.25692/ACEN.2019.2.8 (In Russ.).

28. Parkinson’s disease, secondary parkinsonism and other diseases that manifest as parkinsonism syndrome]. Clinical Recommendations. 2021. Available from: https://cr.minzdrav.gov.ru/recomend/716_1 (In Russ.).

29. Narusheniya obmena medi (bolezn’ Vil’sona) [Disorders of copper metabolism (Wilson’s disease)].Clinical Recommendations. 2021. Available from: https://cr.minzdrav.gov.ru/recomend/376_2 (In Russ.)].

30. Berardelli A, Wenning GK, Antonini A, et al. EFNS/MDS-es recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013 Jan;20(1):16-34. doi: 10.1111/ene.12022. Erratum in: Eur J Neurol. 2013 Feb;20(2):406.

31. D Med Collaborative Group; Gray R, Ives N, Rick C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014 Sep 27;384(9949):1196-205. doi: 10.1016/S0140-6736(14)60683-8. Epub 2014 Jun 11. Erratum in: Lancet. 2014 Sep 27;384(9949):1186.

32. Bergamasco B, Frattola L, Muratorio A, et al. Alpha-dihydroergocryptine in the treatment of de novo parkinsonian patients: results of a multicentre, randomized, double-blind, placebo-controlled study. Acta Neurol Scand. 2000 Jun;101(6):372-80. doi: 10.1034/j.16000404.2000.90295a.x

33. Shannon KM, Bennett JP Jr, Friedman JH. Efficacy of pramipexole, a novel dopamine agonist, as monotherapy in mild to moderate Parkinson’s disease. The Pramipexole Study Group. Neurology. 1997 Sep;49(3):724-8. doi: 10.1212/wnl.49.3.724. Erratum in: Neurology. 1998 Mar;50(3):838.

34. Finotti N, Castagna L, Moretti A, Marzatico F. Reduction of lipid peroxidation in different rat brain areas after cabergoline treatment. Pharmacol Res. 2000;42(4):287-91. doi: 10.1006/phrs.2000.0690

35. Le W-D, Jankovic J. Are dopamine receptors agonists neuroprootective in Parkinson’s disease? Drugs Aging. 2001;18(6):389-96. doi: 10.2165/00002512-200118060-00001

36. Nishibayashi S, Asanuma M, Kohno M, et al. Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem. 1996;67(5):2208-11. doi: 10.1046/j.14714159.1996.67052208.x

37. Rascol O, Brooks DJ, Korczyn AD, et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. New Engl J Med. 2000;342(20):1484-91. doi: 10.1056/nejm200005183422004

38. Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA. 2002 Apr 3;287(13):1653-61. doi: 10.1001/jama.287.13.1653

39. Whone AL, Watts RL, Stoessl AJ, et al; REAL-PET Study Group. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol. 2003 Jul;54(1):93-101. doi: 10.1002/ana.10609

40. Schapira A, Albrecht S, Barone P, et al. P1.203 immediate vs. delayed-start pramipexole in early Parkinson’s disease: The proud study. Parkinsonism Relat Disord. 2009;15:S81. doi: 10.1016/s1353-8020(09)70325-6

41. Gerlach M, Double K, Arzberger T, et al. Dopamine receptor agonists in current clinical use: Comparative dopamine receptor binding profiles defined in the human striatum. J Neural Transmis. 2003;110(10):1119-27. doi: 10.1007/s00702-003-0027-5

42. Etminan M, Samii A, Takkouche B, Rochon PA. Increased risk of somnolence with the new dopamine agonists in patients with Parkinson’s disease. Drug Saf. 2001;24(11):863-8. doi: 10.2165/00002018200124110-00007

43. Antonini A, Cilia R. Behavioural adverse effects of dopaminergic treatments in Parkinson’s disease. Drug Saf. 2009;32(6):475-88. doi: 10.2165/00002018-200932060-00004

44. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson’s disease. Arch Neurol. 2010 May;67(5):589-95. doi: 10.1001/archneurol.2010.65

45. Isaias IU, Siri C, Cilia R, et al. The relationship between impulsivity and impulse control disorders in Parkinson’s disease. Mov Disord. 2008;23(3):411-5. doi: 10.1002/mds.21872

46. Weintraub D, Hoops S, Shea JA, et al. Validation of the questionnaire for impulsivecompulsive disorders in Parkinson’s disease. Mov Disord. 2009;24(10):1461-7. doi: 10.1002/mds.22571

47. Weintraub D, Rektorova I. Impulse control disorders and related behaviors. In: D Aarsland, J Cummings, D Weintraub, K Chaudhuri, editors. Neuropsychiatric and Cognitive Changes in Parkinson’s Disease and Related Movement Disorders: Diagnosis and Management. Cambridge: Cambridge University Press; 2013. P. 140-52. doi: 10.1017/CBO9781139856669.014

48. Joutsa J, Martikainen K, Vahlberg T, et al. Impulse control disorders and depression in Finnish patients with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(2):155-60. doi: 10.1016/j.parkreldis.2011.09.007

49. Antonini A, Barone P, Bonuccelli U, et al. Icarus study: Prevalence and clinical features of impulse control disorders in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2017;88(4):317-24. doi: 10.1136/jnnp-2016315277

50. Thorlund K, Wu P, Druyts E, et al. Nonergot dopamine-receptor agonists for treating Parkinson’s disease – a network meta-analysis. Neuropsychiatr Dis Treatm. 2014;2014:767-76. doi: 10.2147/ndt.s60061

51. LeWitt PA, Boroojerdi B, MacMahon D, et al. Overnight switch from oral dopaminergic agonists to transdermal rotigotine patch in subjects with Parkinson’s disease. Clin Neuropharmacol. 2007;30(5):256-65. doi: 10.1097/wnf.0b013e318154c7c4

52. Millan MJ. From the cell to the clinic: A comparative review of the partial D2/D3 receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson’s disease. Pharmacol Ther. 2010;128(2):229-73. doi: 10.1016/j.pharmthera.2010.06.002

53. Gobert A, Di Cara B, Cistarelli L, Millan MJ. Piribedil enhances frontocortical and hippocampal release of acetylcholine in freely moving rats by blockade of α2aadrenoceptors: A dialysis comparison to Talipexole and Quinelorane in the absence of acetylcholinesterase inhibitors. J Pharmacol Exper Ther. 2003;305(1):338-46. doi: 10.1124/jpet.102.046383

54. Delaville C, Deurwaerdere PD, Benazzouz A. Noradrenaline and Parkinson’s disease. Front Syst Neurosci. 2011 May 18;5:31. doi: 10.3389/fnsys.2011.00031. eCollection 2011.

55. Djaldetti R, Mosberg-Galili R, Sroka H, et al. Camptocormia (Bent Spine) in patients with Parkinson’s disease characterization and possible pathogenesis of an unusual phenomenon. Mov Disord. 1999;14(3):443-7. doi: 10.1002/1531-8257(199905)14:3<443::aidmds1009>3.0.co;2-g

56. Suzuki M, Hirai T, Ito Y, et al. Pramipexole-induced antecollis in Parkinson’s disease. J Neurol Sci. 2008;264(1-2):195-7. doi: 10.1016/j.jns.2007.08.008

57. Calzi F, Bellasio R, Guiso G, et al. Effect of piribedil and its metabolite, S584, on brain lipid peroxidation in vitro and in vivo. Eur J Pharmacol. 1997;338(2):185-90. doi: 10.1016/s0014-2999(97)81947-4

58. Munchau A. Pharmacological treatment of Parkinson’s disease. Postgrad Med J. 2000;76(900):602-10. doi: 10.1136/pmj.76.900.602

59. Rascol O, Dubois B, Caldas AC, et al. Early Piribedil monotherapy of Parkinson’s disease: A planned seven-month report of the Regain Study. Mov Disord. 2006;21(12):2110-5. doi: 10.1002/mds.21122

60. Rondot P, Ziegler M. Activity and acceptability of Piribedil in Parkinson’s disease: A multicentre study. J Neurol. 1992;239 Suppl 1:S28-34. doi: 10.1007/BF00819564

61. Chen X, Ren C, Li J, et al. The efficacy and safety of Piribedil relative to pramipexole for the treatment of early Parkinson’s disease: A systematic literature review and network meta-analysis. Clin Neuropharmacol. 2020;43(4):100-6. doi: 10.1097/wnf.0000000000000400

62. Aarsland D, Bronnick K, Larsen JP, et al. Cognitive impairment in incident, untreated Parkinson’s disease: The Norwegian Parkwest Study. Neurology. 2009;72(13):1121-6. doi: 10.1212/01.wnl.0000338632.00552.cb

63. Aarsland D, Bronnick K, Williams-Gray C, et al. Mild cognitive impairment in Parkinson’s disease: A Multicenter pooled analysis. Neurology. 2010;75(12):1062-9. doi: 10.1212/wnl.0b013e3181f39d0e

64. Litvan I, Aarsland D, Adler CH, et al. MDS Task Force on mild cognitive impairment in Parkinson’s disease: Critical review of pd-MCI. Mov Disord. 2011;26(10):1814-24. doi: 10.1002/mds.23823

65. Yarnall AJ, Breen DP, Duncan GW, et al. Characterizing mild cognitive impairment in incident Parkinson’s disease: The Icicle-PD Study. Neurology. 2014;82(4):308-16. doi: 10.1212/wnl.0000000000000066

66. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson’s disease. J Neurol Sci. 2010;289(1-2):18-22. doi: 10.1016/j.jns.2009.08.034

67. Buter TC, van den Hout A, Matthews FE, et al. Dementia and survival in Parkinson’s disease: A 12-year population study. Neurology. 2008;70(13):1017-22. doi: 10.1212/01.wnl.0000306632.43729.24

68. Svenningsson P, Westman E, Ballard C, Aarsland D. Cognitive impairment in patients with Parkinson’s disease: Diagnosis, biomarkers, and treatment. Lancet Neurol. 2012;11(8):697707. doi: 10.1016/s1474-4422(12)70152-7

69. Fedorova NV, Artemieva EG, Chigir IP, Levin OS. Use of Pronoran (Piribedil) in Parkinson’s disease. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2003;103(9):71-2 (In Russ.).

70. Pilipovich AA, Golubev VL. An impact of pronoran on cognitive and affective disorders in Parkinson’s disease. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2005;105(4):41-7 (In Russ.).

71. Ollat H. Dopaminergic insufficiency reflecting cerebral ageing: Value of a dopaminergic agonist, Piribedil. J Neurol. 1992;239(S1):13-6. doi: 10.1007/bf00819561

72. Valdes P, Schneider BL. Gene therapy: A promising approach for neuroprotection in Parkinson’s disease? Front Neuroanat. 2016 Dec 20;10:123. doi: 10.3389/fnana.2016.00123.eCollection2016.

73. Brocco M, Dekeyne A, Papp M, Millan MJ. Antidepressant-like properties of the anti-parkinson agent, Piribedil, in rodents: Mediation by dopamine D2 receptors. Behav Pharmacol. 2006;17(7):559-72. doi: 10.1097/01.fbp.0000236267.41806.5b

74. Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex – basal ganglia circuits. Cerebral Cortex. 2006;16(7):916-28. doi: 10.1093/cercor/bhj043

75. Dujardin K, Defebvre L. Apathy in Parkinson’s disease: What are the underlying mechanisms? Neurology. 2012;79(11):1082-3. doi: 10.1212/wnl.0b013e3182698dd4

76. Starkstein SE. Apathy in Parkinson’s disease: Diagnostic and Etiological Dilemmas. Mov Disord. 2012;27(2):174-8. doi: 10.1002/mds.24061

77. Pluck GC. Apathy in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2002 Dec;73(6):636-42. doi: 10.1136/jnnp.73.6.636

78. Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord. 2009;24(15):2175-86. doi: 10.1002/mds.22589

79. Barone P, Poewe W, Albrecht S, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(6):573-80. doi: 10.1016/s1474-4422(10)70106-x

80. Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in Advanced Parkinson’s Disease. N Engl J Med. 2003;349(20):1925-34. doi: 10.1056/nejmoa035275

81. Funkiewiez A. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(6):834-9. doi: 10.1136/jnnp.2002.009803

82. Czernecki V, Schüpbach M, Yaici S, et al. Apathy following subthalamic stimulation in Parkinson’s disease: A dopamine responsive symptom. Mov Disord. 2008;23(7):964-9. doi: 10.1002/mds.21949

83. Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: A randomised, Multicentre Study. Lancet Neurol. 2008;7(7):605-14. doi: 10.1016/s1474-4422(08)70114-5

84. Remy P, Doder M, Lees A, et al. Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128(6):131422. doi: 10.1093/brain/awh445

85. Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: Predictors and underlying mesolimbic denervation. Brain. 2010;133(4):1111-27. doi: 10.1093/brain/awq032

86. Schrag A. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2000;69(3):30812. doi: 10.1136/jnnp.69.3.308

87. Voon V, Fernagut P-O, Wickens J, et al. Chronic dopaminergic stimulation in Parkinson’s disease: From Dyskinesias to impulse control disorders. Lancet Neurol. 2009;8(12):1140-9. doi: 10.1016/s14744422(09)70287-x

88. Chaudhuri KR, Schapira AHV. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464-74. doi: 10.1016/s1474-4422(09)70068-7

89. Thobois S, Lhommee E, Klinger H, et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with Piribedil. Brain. 2013;136(5):1568-77. doi: 10.1093/brain/awt067

90. Paus S, Brecht HM, Köster J, et al. Sleep attacks, daytime sleepiness, and dopamine agonists in Parkinson’s disease. Mov Disord. 2003;18(6):659-67. doi: 10.1002/mds.10417

91. Borek LL, Amick MM, Friedman JH. Non-motor aspects of Parkinson’s disease. CNSSpectrums. 2006;11(7):541-54. doi: 10.1017/s1092852900013560

92. Tracik F, Ebersbach G. Sudden daytime sleep onset in Parkinson’s disease: Polysomnographic recordings. Mov Disord. 2001;16(3):500-6. doi: 10.1002/mds.1083

93. Ulivelli M, Rossi S, Lombardi C, et al. Polysomnographic characterization of pergolide-induced sleep attacks in idiopathic PD. Neurology. 2002;58(3):462-5. doi: 10.1212/wnl.58.3.462

94. Allcock LM, Rowan EN, Steen IN, et al. Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(2):110-5. doi: 10.1016/j.parkreldis.2008.03.010

95. Meindorfner C, Körner Y, Möller JC, et al. Driving in Parkinson’s disease: Mobility, accidents, and sudden onset of sleep at the wheel. Mov Disord. 2005;20(7):832-42. doi: 10.1002/mds.20412

96. Drouot X, Moutereau S, Nguyen JP, et al. Low levels of ventricular CSF orexin/hypocretin in Advanced PD. Neurology. 2003;61(4):540-3. doi: 10.1212/01.wnl.0000078194.53210.48

97. Poewe W, Hogl B. Sleep and Parkinson’s disease. Editional review. Curr Opin Neurol. 2000 Aug;13(4):423-6. doi: 10.1097/00019052200008000-00009

98. Verbaan D, van Rooden SM, Visser M, et al. Nighttime sleep problems and daytime sleepiness in Parkinson’s disease. Mov Disord. 2008;23(1):35-41. doi: 10.1002/mds.21727

99. Wood LD. Clinical Review and treatment of select adverse effects of dopamine receptor agonists in Parkinson’s disease. Drugs Aging. 2010;27(4):295-310. doi: 10.2165/11318330000000000-00000

100. Monaca C, Duhamel A, Jacquesson JM, et al. Vigilance troubles in Parkinson’s disease: A subjective and objective polysomnographic study. Sleep Med. 2006;7(5):448-53. doi: 10.1016/j.sleep.2005.12.002

101. Frucht S, Rogers JD, Greene PE, et al. Falling asleep at the wheel: Motor Vehicle Mishaps in persons taking pramipexole and Ropinirole. Neurology. 1999 Jun 10;52(9):1908-10. doi: 10.1212/wnl.52.9.1908

102. Eggert K, Еhlwein C, Kassubek J, et al. Influence of the nonergot dopamine agonist Piribedil on vigilance in patients with Parkinson’s disease and excessive daytime sleepiness (PiViCog-PD). Clin Neuropharmacol. 2014;37(4):116-22. doi: 10.1097/wnf.0000000000000041

103. Millan MJ, Maiofiss L, Cussac D, et al. Differential actions of Antiparkinson agents at multiple classes of monoaminergic receptor. i. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exper Ther. 2002;303(2):791-804. doi: 10.1124/jpet.102.039867

104. Katunina EA, Blokhin V, Nodel MR, et al. Searching for biomarkers in the blood of patients at risk of developing Parkinson’s disease at the Prodromal Stage. Int J Mol Sci. 2023;24(3):1842. doi: 10.3390/ijms24031842


Review

For citations:


Katunina EA, Zalyalova ZA, Pokhabov DV, Ivanova MZ, Semenova AM. Parkinson’s disease. Focus on early stages. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2023;15(3):95-103. (In Russ.) https://doi.org/10.14412/2074-2711-2023-3-95-103

Views: 626


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)