Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Alzheimer's disease and COVID-19

Full Text:


In elderly patients with COVID-19 cognitive functions decline; it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.

About the Authors

N. N. Koberskaya
Department of Nervous System Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; Russian Clinical and Research Center of Gerontology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

119021, Moscow, Rossolimo St., 11, Build. 1
129226, Moscow, 1st Leonova St., 16

Competing Interests:

The conflict of interest has not affected the results of the investigation.

F. A. Roshchin
Department of Nervous System Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

119021, Moscow, Rossolimo St., 11, Build. 1

Competing Interests:

The conflict of interest has not affected the results of the investigation.


1. Beach S, Praschan N, Hogan C, et al. Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry. 2020 Jul-Aug;65:47-53. doi:10.1016/j.genhosppsych.2020.05.008. Epub 2020 May 22.

2. Niazkar H, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020 Jul;41(7):1667-71. doi:10.1007/s10072-020-04486-3. Epub 2020 Jun 1.

3. Heneka MT, Golenbock D, Latz E, Morgan D, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020 Jun 4;12(1):69. doi:10.1186/s13195-020-00640-3

4. Zhang J, Wang HL, Wei M, et al. Incidence of cerebrovascular disease as a comorbidity in patients with COVID-19: a meta-analysis. Aging (Albany NY). 2020 Nov 23;12(23):23450-63. doi:10.18632/aging.104086. Epub 2020 Nov 23.

5. Helms J, Kremer S, Merdji H. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Jun 4;382(23):2268-70. doi:10.1056/NEJMc2008597. Epub 2020 Apr 15.

6. Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron. 2018 Jul 11;99(1):64-82.e7. doi:10.1016/j.neuron.2018.05.023. Epub 2018 Jun 21.

7. Mancuso R, Sicurella M, Agostini S, et al. Herpes simplex virus type 1 and Alzheimer's disease: link and potential impact on treatment. Expert Rev Anti Infect Ther. 2019 Sep;17(9):715-31. doi:10.1080/14787210.2019.1656064. Epub 2019 Aug 23.

8. Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease. J Alzheimers Dis. 2015;48(2):319-53. doi:10.3233/JAD-142853

9. Romeo MA, Gilardini Montani MS, Gaeta A, et al. HHV-6A infection dysregulates autophagy/UPR interplay increasing beta amyloid production and tau phosphorylation in astrocytoma cells as well as in primary neurons, possible molecular mechanisms linking viral infection to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 2020 Mar 1;1866(3):165647. doi:10.1016/j.bbadis.2019.165647. Epub 2019 Dec 19.

10. Bortolotti D, Gentili V, Rotola A, et al. HHV-6A infection induces amyloid-beta expression and activation of microglial cells. Alzheimers Res Ther. 2019 Dec 12;11(1):104. doi:10.1186/s13195-019-0552-6

11. Ball MJ. Limbic predilection in Alzheimer dementia: is reactivated herpesvirus involved? Can J Neurol Sci. 1982 Aug;9(3):303-6. doi:10.1017/s0317167100044115

12. Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer's Disease. J Alzheimers Dis. 2016;51(4):979-84. doi:10.3233/JAD160152

13. Letenneur L, Peres K, Fleury H, et al. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer's disease: a populationbased cohort study. PLoS One. 2008;3(11):e3637. doi:10.1371/journal.pone.0003637. Epub 2008 Nov 4.

14. Roos KL. Encephalitis. Handb Clin Neurol. 2014;121:1377-81. doi:10.1016/B978-0-7020-4088-7.00094-8

15. Davis LE, Johnson RT. An explanation for the localization of herpes simplex encephalitis? Ann Neurol. 1979 Jan;5(1):2-5. doi:10.1002/ana.410050103

16. Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques. J Pathol. 2009 Jan;217(1):131-8. doi:10.1002/path.2449

17. Mohammadi S, Moosaie F, Aarabi M. Understanding the immunologic characteristics of neurologic manifestations of SARS-CoV-2 and potential immunological mechanisms. Mol Neurobiol. 2020;57(12):5263-75. doi:10.1007/s12035-020-02094-y

18. Wang FZ, Kream RM, Stefano GB. Longterm respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996. doi:10.12659/MSM.928996

19. Sepulveda-Loyola W, Rodriguez-Sanchez I, Perez-Rodriguez P, et al. Impact of Social Isolation Due to COVID-19 on Health in Older People: Mental and Physical Effects and Recommendations. J Nutr Health Aging. 2020;24(9):938-47. doi:10.1007/s12603-020-1469-2

20. Martin-Jimenez P, Munoz-Garcia MI, Seoane D, et al. Cognitive Impairment Is a Common Comorbidity in Deceased COVID-19 Patients: A Hospital-Based Retrospective Cohort Study. J Alzheimer's Dis. 2020;78(4):1367-72. doi:10.3233/JAD-200937

21. Hardan L, Filtchev D, Kassem R, et al. COVID-19 and Alzheimer’s Disease: A Literature Review. Medicina. 2021;57:1159. doi:10.3390/medicina57111159

22. Mok VCT, Pendlebury S, Wong A, et al. Tackling challenges in care of Alzheimer's disease and other dementias amid the COVID-19 pandemic, now and in the future. Alzheimers Dement. 2020 Nov;16(11):1571-81. doi:10.1002/alz.12143. Epub 2020 Aug 12. Erratum in: Alzheimers Dement. 2021 May;17(5):906-7.

23. Numbers K, Brodaty H. The effects of the COVID-19 pandemic on people with dementia. Nat Rev Neurol. 2021 Feb;17(2):69-70. doi:10.1038/s41582-020-00450-z

24. Wang H, Lu J, Zhao X, et al. Alzheimer's disease in elderly COVID-19 patients: potential mechanisms and preventive measures. Neurol Sci. 2021 Dec;42(12):4913-20. doi:10.1007/s10072-021-05616-1. Epub 2021 Sep 22. Erratum in: Neurol Sci. 2021 Oct 20.

25. Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY). 2020 Jun 12;12(11):10004-21. doi:10.18632/aging.103493. Epub 2020 Jun 12.

26. Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer's disease: Comparison and associations from molecular to system level. Aging Cell. 2018 Oct;17(5):e12802. doi:10.1111/acel.12802. Epub 2018 Jul 2

27. Rahman MA, Islam K, Rahman S, Alamin M. Neurobiochemical Cross-talk Between COVID-19 and Alzheimer's Disease. Mol Neurobiol. 2021 Mar;58(3):1017-23. doi:10.1007/s12035-020-02177-w. Epub 2020 Oct 19.

28. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol. 2011 Mar;10(3):241-52. doi:10.1016/S1474-4422(10)70325-2

29. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020 Oct 15;75(11):2231-2. doi:10.1093/gerona/glaa131

30. Tudorache IF, Trusca VG, Gafencu AV. Apolipoprotein E – A multifunctional protein with implications in various pathologies as a result of its structural features. Comput Struct Biotechnol J. 2017;15:359-65. doi:10.1016/j.csbj.2017.05.003

31. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019 nCov. bioRxiv [Internet]. 2020. Available from:

32. Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci. 2019 Nov 26;20(23):5939. doi:10.3390/ijms20235939

33. Kulminski AM, Loika Y, Culminskaya I, et al; Long Life Family Study Research Group. Independent associations of TOMM40 and APOE variants with body mass index. Aging Cell. 2019 Feb;18(1):e12869. doi:10.1111/acel.12869. Epub 2018 Nov 21.

34. Kulminski AM, Raghavachari N, Arbeev KG, et al. Protective role of the apolipoprotein E2 allele in age-related disease traits and survival: evidence from the Long Life Family Study. Biogerontology. 2016 Nov;17(5-6):893-905. doi:10.1007/s10522-016-9659-3. Epub 2016 Jul 22.

35. Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer's disease. Neuron. 2008 Jul 31;59(2):190-4. doi:10.1016/j.neuron.2008.07.013

36. Green KN, Peers C. Amyloid beta peptides mediate hypoxic augmentation of Ca(2+) channels. J Neurochem. 2001 May;77(3):953-6. doi:10.1046/j.1471-4159.2001.00338.x

37. Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci. 2008 Sep;31(9):454-63. doi:10.1016/j.tins.2008.06.005. Epub 2008 Jul 31.

38. Chen X, Cao R, Zhong W. Host Calcium Channels and Pumps in Viral Infections. Cells. 2019 Dec 30;9(1):94. doi:10.3390/cells9010094

39. Lu Y, Li X, Geng D. Cerebral MicroStructural Changes in COVID-19 Patients – An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020 Aug;25:100484. doi:10.1016/j.eclinm.2020.100484

40. Abate G, Memo M, Uberti D. Impact of COVID-19 on Alzheimer’s disease risk: viewpoint for research action. Healthcare. 2020;8(3):286. doi:10.3390/healthcare8030286

41. Jacomy H, Fragoso G, Almazan G. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006 Jun 5;349(2):335-46. doi:10.1016/j.virol.2006.01.049

42. Ciaccio M, Lo Sasso B, Scazzone C, et al. COVID-19 and Alzheimer's Disease. Brain Sci. 2021 Feb 27;11(3):305. doi:10.3390/brainsci11030305

43. Klein R, Soung A, Sissoko C, et al. COVID-19 induces neuroinflammation and loss of hippocampal neurogenesis. Res Square. 2021; doi:10.21203/

44. Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases. Metab Brain Dis. 2020 Dec;35(8):1241-50. doi:10.1007/s11011-020-00600-8. Epub 2020 Jul 17.

45. Shamim D, Laskowski M. Inhibition of Inflammation Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alzheimer Disease. J Cent Nerv Syst Dis. 2017 Jul 28;9:1179573517722512. doi:10.1177/1179573517722512

46. Ren H, Han R, Chen X, et al. Potential therapeutic targets for intracerebral hemorrhageassociated inflammation: An update. J Cereb Blood Flow Metab. 2020 Sep;40(9):1752-68. doi:10.1177/0271678X20923551. Epub 2020 May 19.

47. Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 2013 Jan 31;493(7434):674-8. doi:10.1038/nature11729. Epub 2012 Dec 19.

48. Kalovyrna N, Apokotou O, Boulekou S, et al. A 3'UTR modification of the TNF-α mouse gene increases peripheral TNF-α and modulates the Alzheimer-like phenotype in 5XFAD mice. Sci Rep. 2020 May 26;10(1):8670. doi:10.1038/s41598-020-65378-2

49. Munoz P, Ardiles AO, Perez-Espinosa B, et al. Redox modifications in synaptic components as biomarkers of cognitive status, in brain aging and disease. Mech Ageing Dev. 2020 Jul;189:111250. doi:10.1016/j.mad.2020.111250. Epub 2020 May 17.

50. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000 May-Jun;21(3):383-421. doi:10.1016/s0197-4580(00)00124-x

51. Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005 Sep 7;25(36):8240-9. doi:10.1523/JNEUROSCI.1808-05.2005

52. Naughton SX, Raval U, Pasinetti GM. Potential Novel Role of COVID-19 in Alzheimer's Disease and Preventative Mitigation Strategies. J Alzheimers Dis. 2020;76(1):21-5. doi:10.3233/JAD-200537

53. De Felice FG, Tovar-Moll F, Moll J, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the Central Nervous System. Trends Neurosci. 2020 Jun;43(6):355-7. doi:10.1016/j.tins.2020.04.004. Epub 2020 Apr 21.

54. Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010 Mar 3;5(3):e9505. doi:10.1371/journal.pone.0009505

55. Mcloughlin BC, Miles A, Webb TE, et al. Functional and cognitive outcomes after COVID-19 delirium. Eur Geriatr Med. 2020 Oct;11(5):857-62. doi:10.1007/s41999-020-00353-8. Epub 2020 Jul 14.

56. Ennerfelt HE, Lukens JR. The role of innate immunity in Alzheimer's disease. Immunol Rev. 2020 Sep;297(1):225-46. doi:10.1111/imr.12896. Epub 2020 Jun 26.

57. Papuc E, Rejdak K. The role of myelin damage in Alzheimer's disease pathology. Arch Med Sci. 2018 Aug 28;16(2):345-51. doi:10.5114/aoms.2018.76863

58. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer's disease. Biomed Rep. 2016 May;4(5):519-22. doi:10.3892/br.2016.630. Epub 2016 Mar 15.

59. Kloske CM, Wilcock DM. The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Front Immunol. 2020 Apr 30;11:754. doi:10.3389/fimmu.2020.00754

60. Kritas SK, Ronconi G, Caraffa A, et al. Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J Biol Regul Homeost Agents. 2020 JanFeb;34(1):9-14. doi:10.23812/20-EditorialKritas

61. Wang H, Tang X, Fan H, et al. Potential mechanisms of hemorrhagic stroke in elderly COVID-19 patients. Aging (Albany NY). 2020 Jun 11;12(11):10022-34. doi:10.18632/aging.103335. Epub 2020 Jun 11.

62. Labandeira-Garcia JL, Garrido-Gil P, Rodriguez-Pallares J, et al. Brain reninangiotensin system and dopaminergic cell vulnerability. Front Neuroanat. 2014 Jul 8;8:67. doi:10.3389/fnana.2014.00067

63. Ding Q, Shults NV, Harris BT, Suzuki YJ. Angiotensin-converting enzyme 2 (ACE2) is upregulated in Alzheimer’s disease brain. reprinted in: bioRxiv. 2020.10.08.331157. doi:10.1101/2020.10.08.331157

64. Lim KH, Yang S, Kim SH, Joo JY. Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer's disease. J Infect. 2020 Sep;81(3):e33-e34. doi:10.1016/j.jinf.2020.06.072

65. Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS Chem Neurosci. 2015 Apr 15;6(4):508-21. doi:10.1021/cn500363g

66. Kehoe PG, Miners S, Love S. Angiotensins in Alzheimer's disease – friend or foe? Trends Neurosci. 2009 Dec;32(12):619-28. doi:10.1016/j.tins.2009.07.006. Epub 2009 Sep 30.

67. Delgado-Roche L, Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch Med Res. 2020 Jul;51(5):384-7. doi:10.1016/j.arcmed.2020.04.019. Epub 2020 Apr 30.

68. Panfoli I. Potential role of endothelial cell surface ectopic redox complexes in COVID-19 disease pathogenesis. Clin Med (Lond). 2020 Sep;20(5):e146-e147. doi:10.7861/clinmed.2020-0252. Epub 2020 Jun 29.

69. Nasi A, McArdle S, Gaudernack G, et al. Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARSCoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicol Rep. 2020 Jun 18;7:768-71. doi:10.1016/j.toxrep.2020.06.003

70. Hardas SS, Sultana R, Clark AM, et al. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol. 2013 Jan 30;1(1):80-5. doi:10.1016/j.redox.2013.01.002

71. Lima M, Siokas V, Aloizou AM, et al. Unraveling the Possible Routes of SARS-COV-2 Invasion into the Central Nervous System. Curr Treat Options Neurol. 2020;22(11):37. doi:10.1007/s11940-020-00647-z. Epub 2020 Sep 25.

72. Ding HG, Deng YY, Yang RQ, et al. Hypercapnia induces IL-1β overproduction via activation of NLRP3 inflammasome: implication in cognitive impairment in hypoxemic adult rats. J Neuroinflammation. 2018 Jan 5;15(1):4. doi:10.1186/s12974-017-1051-y

73. Chen X, Zhao B, Qu Y, et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020 Nov 5;71(8):1937-42. doi:10.1093/cid/ciaa449

74. Cojocaru IM, Cojocaru M, Miu G, Sapira V. Study of interleukin-6 production in Alzheimer's disease. Rom J Intern Med. 2011;49(1):55-8.

75. Strafella C, Caputo V, Termine A, et al. Investigation of Genetic Variations of IL6 and IL6R as Potential Prognostic and Pharmacogenetics Biomarkers: Implications for COVID-19 and Neuroinflammatory Disorders. Life (Basel). 2020 Dec 16;10(12):351. doi:10.3390/life10120351

76. Mun MJ, Kim JH, Choi JY, Jang WC. Genetic polymorphisms of interleukin genes and the risk of Alzheimer's disease: An update meta-analysis. Meta Gene. 2016 Jan 11;8:1-10. doi:10.1016/j.mgene.2016.01.001

77. Cauchois R, Koubi M, Delarbre D, et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):18951-3. doi:10.1073/pnas.2009017117. Epub 2020 Jul 22. Erratum in: Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22604.

78. Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7611-5. doi:10.1073/pnas.86.19.7611

79. Goshen I, Kreisel T, Ounallah-Saad H, et al. et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007 Sep-Nov;32(8-10):1106-15. doi:10.1016/j.psyneuen.2007.09.004. Epub 2007 Oct 31.

80. Agnello L, Bivona G, Lo Sasso B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem. 2017 Sep;50(13-14):797-803. doi:10.1016/j.clinbiochem.2017.04.018. Epub 2017 Apr 26.

81. Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Front Immunol. 2020 Aug 18;11:2069. doi:10.3389/fimmu.2020.02069

82. Wang X, Zhang S, Lin F, et al. Elevated Galectin-3 Levels in the Serum of Patients With Alzheimer's Disease. Am J Alzheimers Dis Other Demen. 2015 Dec;30(8):729-32. doi:10.1177/1533317513495107. Epub 2013 Jul 2.

83. Tao CC, Cheng KM, Ma YL, et al. Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2020 Jan;27(1):192-209. doi:10.1038/s41418-019-0348-z. Epub 2019 May 24.

84. Virhammar J, Nääs A, Fällmar D, et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. Eur J Neurol. 2021 Oct;28(10):3324-31. doi:10.1111/ene.14703. Epub 2021 Jan 19.

85. Eden A, Kanberg N, Gostner J, et al. CSF Biomarkers in Patients With COVID-19 and Neurologic Symptoms: A Case Series. Neurology. 2021 Jan 12;96(2):e294-e300. doi:10.1212/WNL.0000000000010977. Epub 2020 Oct 1.

86. Agnello L, Piccoli T, Vidali M, et al. Diagnostic accuracy of cerebrospinal fluid biomarkers measured by chemiluminescent enzyme immunoassay for Alzheimer disease diagnosis. Scand J Clin Lab Invest. 2020 Jul;80(4):313-7. doi:10.1080/00365513.2020.1740939. Epub 2020 Apr 7.

87. Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020 Sep 22;95(12):e1754-e1759. doi:10.1212/WNL.0000000000010111. Epub 2020 Jun 16.

88. Jin M, Cao L, Dai YP. Role of Neurofilament Light Chain as a Potential Biomarker for Alzheimer's Disease: A Correlative Meta-Analysis. Front Aging Neurosci. 2019 Sep 13;11:254. doi:10.3389/fnagi.2019.00254

89. Liang J, Li J, Jia R, et al. Identification of the optimal cognitive drugs among Alzheimer's disease: a Bayesian meta-analytic review. Clin Interv Aging. 2018 Oct 18;13:2061-73. doi:10.2147/CIA.S184968

90. Cummings J, Aisen PS, DuBois B, et al. Drug development in Alzheimer's disease: the path to 2025. Alzheimers Res Ther. 2016 Sep 20;8:39. doi:10.1186/s13195-016-0207-9

91. Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol. 2008 Mar;6(1):55-78. doi:10.2174/157015908783769671

92. Seeman P, Caruso C, Lasaga M. Memantine agonist action at dopamine D2High receptors. Synapse. 2008 Feb;62(2):149-53. doi:10.1002/syn.20472

93. Frankiewicz T, Potier B, Bashir ZI, et al. Effects of memantine and MK-801 on NMDAinduced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. Br J Pharmacol. 1996;117(4):689-97. doi:10.1111/j.1476-5381.1996.tb15245.x

94. Costa VV, Del Sarto JL, Rocha RF, et al. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection. mBio. 2017 Apr 25;8(2):e00350-17. doi:10.1128/mBio.00350-17

95. Mercorelli B, Palu G, Loregian A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol. 2018;26(10):865-76. doi:10.1016/j.tim.2018.04.004

96. Brison E, Jacomy H, Desforges M, Talbot PJ. Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol. 2014;88(3):1548-63. doi:10.1128/JVI.02972-13

97. Nath A, Haughey NJ, Jones M, et al. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol. 2000;47(2):186-94.

98. Gemignani A, Paudice P, Pittaluga A, Raiteri M. The HIV-1 coat protein gp120 and some of its fragments potently activate native cerebral NMDA receptors mediating neuropeptide release. Eur J Neurosci. 2000 Aug;12(8):2839-46. doi:10.1046/j.1460-9568.2000.00172.x

99. Merino JJ, Montes ML, Blanco A, et al. [HIV-1 neuropathogenesis: therapeutic strategies against neuronal loss induced by gp120/Tat glycoprotein in the central nervous system]. Rev Neurol. 2011;52(2):101-11.

100. Fisher K, Coderre TJ, Hagen NA. Targeting the N-methyl-D-aspartate receptor for chronic pain management. Preclinical animal studies, recent clinical experience and future research directions. J Pain Symptom Manage. 2000;20(5):358-73. doi:10.1016/s0885-3924(00)00213-x

101. Cheng Q, Fang L, Feng D, et al. Memantine ameliorates pulmonary inflammation in a mice model of COPD induced by cigarette smoke combined with LPS. Biomed Pharmacother. 2019;109:2005-13. doi:10.1016/j.biopha.2018.11.002

102. Kamat PK, Tota S, Rai S, et al. A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci. 2012;90(19-20):713-20. doi:10.1016/j.lfs.2012.03.012

103. Kamat PK, Tota S, Saxena G, et al. Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res. 2010;1309:66-74. doi:10.1016/j.brainres.2009.10.064

104. Huang CY, Wang LC, Shan YS, et al. Memantine attenuates delayed vasospasm after experimental subarachnoid hemorrhage via modulating endothelial nitric oxide synthase. Int J Mol Sci. 2015;16(6):14171-80. doi:10.3390/ijms160614171

105. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297-306. doi:10.1002/da.22084

106. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193-215. doi:10.1038/npp.2016.199

107. Marinescu I, Marinescu D, Mogoanta L, et al. SARS-CoV-2 infection in patients with serious mental illness and possible benefits of prophylaxis with Memantine and Amantadine. Rom J Morphol Embryol. 2020 Oct-Dec;61(4):1007-22. doi:10.47162/RJME.61.4.03


For citations:

Koberskaya N.N., Roshchin F.A. Alzheimer's disease and COVID-19. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):89-97. (In Russ.)

Views: 458

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)