Brain commissures and related pathologies
https://doi.org/10.14412/2074-2711-2022-6-73-79
Abstract
White matter commissural fibers are a special type of fibers that connect similar areas of the cortex of opposite hemispheres. Telencephalic commissures have a direct impact on cognitive function. Diencephalic commissures connect the structures of the midbrain, diencephalon, and forebrain. The pathways they form are involved in the proliferation of white matter diseases. The review provides updated information on the morphology, functions, impairments of development and blood supply of brain commissures and their functional relationship with neurological diseases such as Alzheimer's disease, Parino's syndrome, agenesis of the corpus callosum, and autism spectrum disorders.
About the Authors
V. N. NikolenkoRussian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
N. A. Rizaeva
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
M. V. Oganesyan
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
K. A. Vekhova
Russian Federation
Ksenia Andreevna Vekhova
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
Competing Interests:
There are no conflicts of interest.
N. A. F. Alyautdinova
Russian Federation
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
S. I. Balan
Russian Federation
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
T. A. Karashaeva
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
Competing Interests:
There are no conflicts of interest.
A. A. Bolotskaya
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
Competing Interests:
There are no conflicts of interest.
References
1. Güntürkün O, Ströckens F, Ocklenburg S. Brain Lateralization: A Comparative Perspective. Physiol Rev. 2020;100(3):1019-63. doi:10.1152/PHYSREV.00006.2019
2. Lavrador JP, Ferreira V, Lourenco M, et al. White-matter commissures: a clinically focused anatomical review. Surg Radiol Anat. 2019;41(6):613-24. doi:10.1007/s00276-019-02218-7
3. Shah A, Jhawar S, Goel A, Goel A. Corpus Callosum and Its Connections: A Fiber Dissection Study. World Neurosurg. 2021;151:e1024-35. doi:10.1016/J.WNEU.2021.05.047
4. Westerhausen R, Kreuder F, Woerner W, et al. Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett. 2006;409(2):140-5. doi:10.1016/J.NEULET.2006.09.028
5. Friefeld S, MacGregor D, Chuang S, Saint-Cyr J. Comparative study of interand intrahemispheric somatosensory functions in children with partial and complete agenesis of the corpus callosum. Dev Med Child Neurol. 2000 Dec;42(12):831-8. doi:10.1017/s0012162200001535
6. Gazzaniga MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain. 2000 Jul;123(Pt 7):1293-326. doi:10.1093/brain/123.7.1293
7. De Leon Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development. 2020 Sep 28;147(18):dev189738. doi:10.1242/dev.189738
8. Krupa K, Bekiesinska-Figatowska M. Congenital and acquired abnormalities of the corpus callosum: a pictorial essay. Biomed Res Int. 2013;2013:265619. doi:10.1155/2013/265619. Epub 2013 Aug 6.
9. Probst M. Ueber den Bau des vollständig balkenlosen Gross-hirnes sowie über Mikrogyrie und Heterotopie der grauen Substanz. Arch Psychiatr Nervenkrankheiten. 1901;34(3):709-86. doi:10.1007/BF02680175
10. Benezit A, Hertz-Pannier L, Dehaene-Lambertz G, et al. Organising white matter in a brain without corpus callosum fibres. Cortex. 2015;63:155-71. doi:10.1016/J.CORTEX.2014.08.022
11. Jamuar SS, Schmitz-Abe K, D'Gama AM, et al. Biallelic mutations in human DCC cause developmental split-brain syndrome. Nat Genet. 2017;49(4):606-12. doi:10.1038/NG.3804
12. Temur HO, Yurtsever I, Yesil G, et al. Correlation Between DTI Findings and Volume of Corpus Callosum in Children with AUTISM. Curr Med Imaging Rev. 2019;15(9):895-9. doi:10.2174/1573405614666181005114315
13. Kakou M, Velut S, Destrieux C. [Arterial and venous vascularization of the corpus callosum]. Neurochirurgie. 1998;44(1 Suppl):31-7. doi:10.1016/j.morpho.2014.04.072
14. Wilson CA, Mullen MT, Jackson BP, et al. Etiology of Corpus Callosum Lesions with Restricted Diffusion. Clin Neuroradiol. 2017;27(1):31-7. doi:10.1007/S00062-015-0409-8
15. Jang SH, Lee J, Yeo SS, Chang MC. Callosal disconnection syndrome after corpus callosum infarct: A diffusion tensor tractography study. J Stroke Cerebrovasc Dis. 2013 Oct;22(7):e240-4. doi:10.1016/j.jstrokecerebrovasdis.2012.10.015. Epub 2012 Dec 12.
16. Marchi NA, Ptak R, Wetzel C, et al. Callosal disconnection syndrome after ischemic stroke of the corpus callosum due to meningococcal meningitis: A case report. J Neurol Sci. 2016;369:119-20. doi:10.1016/J.JNS.2016.08.009
17. Shozawa H, Futamura A, Saito Y, et al. Diagonistic Apraxia: A Unique Case of Corpus Callosal Disconnection Syndrome and Neuromyelitis Optica Spectrum Disorder. Front Neurol. 2018 Aug 10;9:653. doi:10.3389/fneur.2018.00653. eCollection 2018.
18. Feinberg TE, Schindler RJ, Flanagan NG, Haber LD. Two alien hand syndromes. Neurology. 1992 Jan;42(1):19-24. doi:10.1212/wnl.42.1.19
19. Sarva H, Deik A, Severt WL. Pathophysiology and treatment of alien hand syndrome. Tremor Other Hyperkinet Mov (N Y). 2014 Dec 5;4:241. doi:10.7916/D8VX0F48
20. Nandhagopal R, Al-Asmi A, Johnston WJ, et al. Callosal warning syndrome. J Neurol Sci. 2012;314(1-2):178-80. doi:10.1016/J.JNS.2011.10.007
21. Turner BH, Mishkin M, Knapp M. Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol. 1980;191(4):515-43. doi:10.1002/CNE.901910402
22. Klingler J, Gloor P. The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol. 1960;115(3):333-69. doi:10.1002/CNE.901150305
23. Weiss A, Di Carlo DT, Di Russo P, et al. Microsurgical anatomy of the amygdaloid body and its connections. Brain Struct Funct. 2021;226(3):861-74. doi:10.1007/S00429-020-02214-3
24. Kucharski D, Burka N, Hall WG. The anterior limb of the anterior commissure is an access route to contralateral stored olfactory preference memories. Psychobiology. 1990;18(2):195-204. doi:10.3758/BF03327227
25. Hsu TT, Huang TN, Hsueh YP. Anterior Commissure Regulates Neuronal Activity of Amygdalae and Influences Locomotor Activity, Social Interaction and Fear Memory in Mice. Front Mol Neurosci. 2020 Mar 31;13:47. doi:10.3389/fnmol.2020.00047. eCollection 2020.
26. Botez-Marquard T, Botez MI. Visual memory deficits after damage to the anterior commissure and right fornix. Arch Neurol. 1992;49(3):321-4. doi:10.1001/ARCHNEUR.1992.00530270141032
27. Cavaliere C, Aiello M, Soddu A, et al. Organization of the commissural fiber system in congenital and late-onset blindness. Neuroimage Clin. 2020;25:102133. doi:10.1016/j.nicl.2019.102133. Epub 2019 Dec 14.
28. Cross DJ, Flexman JA, Anzai Y, et al. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. Neuroimage. 2006;32(3):1265-72. doi:10.1016/J.NEUROIMAGE.2006.04.229
29. Siffredi V, Wood AG, Leventer RJ, et al. Anterior and posterior commissures in agenesis of the corpus callosum: Alternative pathways for attention processes? Cortex. 2019;121:454-67. doi:10.1016/J.CORTEX.2019.09.014
30. Robichaux MA, Chenaux G, Ho HYH, et al. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Dev Neurobiol. 2016;76(4):405-20. doi:10.1002/DNEU.22323
31. Abudureyimu S, Asai N, Enomoto A, et al. Essential Role of Linx/Islr2 in the Development of the Forebrain Anterior Commissure. Sci Rep. 2018 May 8;8(1):7292. doi:10.1038/s41598-018-24064-0
32. Hetts SW, Sherr EH, Chao S, et al. Anomalies of the corpus callosum: an MR analysis of the phenotypic spectrum of associated malformations. AJR Am J Roentgenol. 2006;187(5):1343-8. doi:10.2214/AJR.05.0146
33. Mitchell TN, Stevens JM, Free SL, et al. Anterior commissure absence without callosal agenesis: a new brain malformation. Neurology. 2002;58(8):1297-9. doi:10.1212/WNL.58.8.1297
34. Bekov DB. Atlas arteriy i ven golovnogo mozga cheloveka [Atlas of arteries and veins of the human brain]. Moscow: Medicine; 1979 (In Russ.).
35. Ozdemir NG. The Anatomy of the Posterior Commissure. Turk Neurosurg. 2015;25(6):837-43. doi:10.5137/1019-5149.JTN.12122-14.2
36. Perez-Figares JM, Jimenez AJ, Rodriguez EM. Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech. 2001;52:591-607.
37. Johns P. Chapter 3 – Functional neuroanatomy. In: Clinical neuroscience: an illustrated colour text. 2014. P. 27-47.
38. Fiester P, Baig SA, Patel J, Rao D. An Anatomic, Imaging, and Clinical Review of the Medial Longitudinal Fasciculus. J Clin Imaging Sci. 2020;10:83. doi:10.25259/JCIS_49_2020
39. Feroze KB, Patel BC. Parinaud Syndrome. StatPearls Publishing; 2022.
40. Ortiz JF, Eissa-Garces A, Ruxmohan S, et al. Understanding Parinaud's Syndrome. Brain Sci. 2021 Nov 6;11(11):1469. doi:10.3390/brainsci11111469
41. Sciacca S, Lynch J, Davagnanam I, Barker R. Midbrain, Pons, and Medulla: Anatomy and Syndromes. Radiographics. 2019;39(4):1110-25. doi:10.1148/RG.2019180126
42. Gaymard B, Huynh C, Laffont I. Unilateral eyelid retraction. J Neurol Neurosurg Psychiatry. 2000 Mar;68(3):390-2. doi:10.1136/jnnp.68.3.390a
43. Schmidtke K, Büttner-Ennever JA. Nervous control of eyelid function. Brain. 1992;115(1):227-47. doi:10.1093/BRAIN/115.1.227
44. Senova S, Fomenko A, Gondard E, Lozano AM. Anatomy and function of the fornix in the context of its potential as a therapeutic target. J Neurol Neurosurg Psychiatry. 2020;91(5):547-59. doi:10.1136/JNNP-2019-322375
45. Christiansen K, Metzler-Baddeley C, Parker GD, et al. Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: An MRI-diffusion study. Brain Behav. 2016 Nov 22;7(1):e00604. doi:10.1002/brb3.604. eCollection 2017 Jan.
46. Thomas AG, Koumellis P, Dineen RA. The fornix in health and disease: an imaging review. Radiographics. 2011;31(4):1107-21. doi:10.1148/RG.314105729
47. Liu H, Temel Y, Boonstra J, Hescham S. Correction to: The effect of fornix deep brain stimulation in brain diseases. Cell Mol Life Sci. 2020;77(17):3467. doi:10.1007/S00018-020-03589-6
48. Plowey ED, Ziskin JL. Hippocampal phospho-tau/MAPT neuropathology in the fornix in Alzheimer disease: an immunohistochemical autopsy study. Acta Neuropathol Commun. 2016;4(1):114. doi:10.1186/S40478-016-0388-2
49. Oishi K, Mielke MM, Albert M, et al. The fornix sign: a potential sign for Alzheimer's disease based on diffusion tensor imaging. J Neuroimaging. 2012;22(4):365-74. doi:10.1111/J.1552-6569.2011.00633.X
50. Laxton AW, Tang-Wai DF, McAndrews MP, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann Neurol. 2010;68(4):521-34. doi:10.1002/ANA.22089
51. Hescham S, Jahanshahi A, Schweimer JV, et al. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus. Brain Struct Funct. 2016;221(8):4281-6. doi:10.1007/S00429-015-1144-2
52. Sandyk R. Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. Int J Neurosci. 1991;61(3-4):189-219. doi:10.3109/00207459108990738
53. Sandyk R. Pineal and habenula calcification in schizophrenia. Int J Neurosci. 1992;67(1-4):19-30. doi:10.3109/00207459208994773
54. Jhou TC, Fields HL, Baxter MG, et al. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron. 2009;61(5):786-800. doi:10.1016/J.NEURON.2009.02.001
55. Velasquez KM, Molfese DL, Salas R. The role of the habenula in drug addiction. Front Hum Neurosci. 2014 Mar 28;8:174. doi:10.3389/fnhum.2014.00174. eCollection 2014.
56. Cho SE, Park CA, Na KS, et al. Left-right asymmetric and smaller right habenula volume in major depressive disorder on high-resolution 7-T magnetic resonance imaging. PLoS One. 2021 Aug 3;16(8):e0255459. doi:10.1371/journal.pone.0255459. eCollection 2021.
57. Wong AK, Wolfson DI, Borghei A, Sani S. Prevalence of the interthalamic adhesion in the human brain: a review of literature. Brain Struct Funct. 2021;226(8):2481-7. doi:10.1007/S00429-021-02287-8
58. Olry R, Haines DE. NEUROwords. Interthalamic adhesion: scruples about calling a spade a spade? J Hist Neurosci. 2005 Jun;14(2):116-8. doi:10.1080/096470490910128
59. Borghei A, Cothran T, Brahimaj B, Sani S. Role of massa intermedia in human neurocognitive processing. Brain Struct Funct. 2020;225(3):985-93. doi:10.1007/S00429-020-02050-5
60. Haghir H, Mokhber N, Azarpazhooh MR, et al. A magnetic resonance imaging study of adhesio interthalamica in clinical subtypes of schizophrenia. Indian J Psychiatry. 2013;55(2):135. doi:10.4103/0019-5545.111450
Review
For citations:
Nikolenko V.N., Rizaeva N.A., Oganesyan M.V., Vekhova K.A., Alyautdinova N.A., Balan S.I., Karashaeva T.A., Bolotskaya A.A. Brain commissures and related pathologies. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):73-79. (In Russ.) https://doi.org/10.14412/2074-2711-2022-6-73-79