Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Brain commissures and related pathologies

https://doi.org/10.14412/2074-2711-2022-6-73-79

Abstract

White matter commissural fibers are a special type of fibers that connect similar areas of the cortex of opposite hemispheres. Telencephalic commissures have a direct impact on cognitive function. Diencephalic commissures connect the structures of the midbrain, diencephalon, and forebrain. The pathways they form are involved in the proliferation of white matter diseases. The review provides updated information on the morphology, functions, impairments of development and blood supply of brain commissures and their functional relationship with neurological diseases such as Alzheimer's disease, Parino's syndrome, agenesis of the corpus callosum, and autism spectrum disorders.

About the Authors

V. N. Nikolenko
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University); Lomonosov Moscow State University
Russian Federation

119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1


Competing Interests:

There are no conflicts of interest.



N. A. Rizaeva
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University); Lomonosov Moscow State University
Russian Federation

119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1


Competing Interests:

There are no conflicts of interest.



M. V. Oganesyan
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University); Lomonosov Moscow State University
Russian Federation

119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1


Competing Interests:

There are no conflicts of interest.



K. A. Vekhova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation

Ksenia Andreevna Vekhova

119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4


Competing Interests:

There are no conflicts of interest.



N. A. F. Alyautdinova
Lomonosov Moscow State University
Russian Federation

119991, Moscow, Leninskiye Gory, 1


Competing Interests:

There are no conflicts of interest.



S. I. Balan
Lomonosov Moscow State University
Russian Federation

119991, Moscow, Leninskiye Gory, 1


Competing Interests:

There are no conflicts of interest.



T. A. Karashaeva
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation

119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4


Competing Interests:

There are no conflicts of interest.



A. A. Bolotskaya
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation

119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4


Competing Interests:

There are no conflicts of interest.



References

1. Güntürkün O, Ströckens F, Ocklenburg S. Brain Lateralization: A Comparative Perspective. Physiol Rev. 2020;100(3):1019-63. doi:10.1152/PHYSREV.00006.2019

2. Lavrador JP, Ferreira V, Lourenco M, et al. White-matter commissures: a clinically focused anatomical review. Surg Radiol Anat. 2019;41(6):613-24. doi:10.1007/s00276-019-02218-7

3. Shah A, Jhawar S, Goel A, Goel A. Corpus Callosum and Its Connections: A Fiber Dissection Study. World Neurosurg. 2021;151:e1024-35. doi:10.1016/J.WNEU.2021.05.047

4. Westerhausen R, Kreuder F, Woerner W, et al. Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett. 2006;409(2):140-5. doi:10.1016/J.NEULET.2006.09.028

5. Friefeld S, MacGregor D, Chuang S, Saint-Cyr J. Comparative study of interand intrahemispheric somatosensory functions in children with partial and complete agenesis of the corpus callosum. Dev Med Child Neurol. 2000 Dec;42(12):831-8. doi:10.1017/s0012162200001535

6. Gazzaniga MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain. 2000 Jul;123(Pt 7):1293-326. doi:10.1093/brain/123.7.1293

7. De Leon Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development. 2020 Sep 28;147(18):dev189738. doi:10.1242/dev.189738

8. Krupa K, Bekiesinska-Figatowska M. Congenital and acquired abnormalities of the corpus callosum: a pictorial essay. Biomed Res Int. 2013;2013:265619. doi:10.1155/2013/265619. Epub 2013 Aug 6.

9. Probst M. Ueber den Bau des vollständig balkenlosen Gross-hirnes sowie über Mikrogyrie und Heterotopie der grauen Substanz. Arch Psychiatr Nervenkrankheiten. 1901;34(3):709-86. doi:10.1007/BF02680175

10. Benezit A, Hertz-Pannier L, Dehaene-Lambertz G, et al. Organising white matter in a brain without corpus callosum fibres. Cortex. 2015;63:155-71. doi:10.1016/J.CORTEX.2014.08.022

11. Jamuar SS, Schmitz-Abe K, D'Gama AM, et al. Biallelic mutations in human DCC cause developmental split-brain syndrome. Nat Genet. 2017;49(4):606-12. doi:10.1038/NG.3804

12. Temur HO, Yurtsever I, Yesil G, et al. Correlation Between DTI Findings and Volume of Corpus Callosum in Children with AUTISM. Curr Med Imaging Rev. 2019;15(9):895-9. doi:10.2174/1573405614666181005114315

13. Kakou M, Velut S, Destrieux C. [Arterial and venous vascularization of the corpus callosum]. Neurochirurgie. 1998;44(1 Suppl):31-7. doi:10.1016/j.morpho.2014.04.072

14. Wilson CA, Mullen MT, Jackson BP, et al. Etiology of Corpus Callosum Lesions with Restricted Diffusion. Clin Neuroradiol. 2017;27(1):31-7. doi:10.1007/S00062-015-0409-8

15. Jang SH, Lee J, Yeo SS, Chang MC. Callosal disconnection syndrome after corpus callosum infarct: A diffusion tensor tractography study. J Stroke Cerebrovasc Dis. 2013 Oct;22(7):e240-4. doi:10.1016/j.jstrokecerebrovasdis.2012.10.015. Epub 2012 Dec 12.

16. Marchi NA, Ptak R, Wetzel C, et al. Callosal disconnection syndrome after ischemic stroke of the corpus callosum due to meningococcal meningitis: A case report. J Neurol Sci. 2016;369:119-20. doi:10.1016/J.JNS.2016.08.009

17. Shozawa H, Futamura A, Saito Y, et al. Diagonistic Apraxia: A Unique Case of Corpus Callosal Disconnection Syndrome and Neuromyelitis Optica Spectrum Disorder. Front Neurol. 2018 Aug 10;9:653. doi:10.3389/fneur.2018.00653. eCollection 2018.

18. Feinberg TE, Schindler RJ, Flanagan NG, Haber LD. Two alien hand syndromes. Neurology. 1992 Jan;42(1):19-24. doi:10.1212/wnl.42.1.19

19. Sarva H, Deik A, Severt WL. Pathophysiology and treatment of alien hand syndrome. Tremor Other Hyperkinet Mov (N Y). 2014 Dec 5;4:241. doi:10.7916/D8VX0F48

20. Nandhagopal R, Al-Asmi A, Johnston WJ, et al. Callosal warning syndrome. J Neurol Sci. 2012;314(1-2):178-80. doi:10.1016/J.JNS.2011.10.007

21. Turner BH, Mishkin M, Knapp M. Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol. 1980;191(4):515-43. doi:10.1002/CNE.901910402

22. Klingler J, Gloor P. The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol. 1960;115(3):333-69. doi:10.1002/CNE.901150305

23. Weiss A, Di Carlo DT, Di Russo P, et al. Microsurgical anatomy of the amygdaloid body and its connections. Brain Struct Funct. 2021;226(3):861-74. doi:10.1007/S00429-020-02214-3

24. Kucharski D, Burka N, Hall WG. The anterior limb of the anterior commissure is an access route to contralateral stored olfactory preference memories. Psychobiology. 1990;18(2):195-204. doi:10.3758/BF03327227

25. Hsu TT, Huang TN, Hsueh YP. Anterior Commissure Regulates Neuronal Activity of Amygdalae and Influences Locomotor Activity, Social Interaction and Fear Memory in Mice. Front Mol Neurosci. 2020 Mar 31;13:47. doi:10.3389/fnmol.2020.00047. eCollection 2020.

26. Botez-Marquard T, Botez MI. Visual memory deficits after damage to the anterior commissure and right fornix. Arch Neurol. 1992;49(3):321-4. doi:10.1001/ARCHNEUR.1992.00530270141032

27. Cavaliere C, Aiello M, Soddu A, et al. Organization of the commissural fiber system in congenital and late-onset blindness. Neuroimage Clin. 2020;25:102133. doi:10.1016/j.nicl.2019.102133. Epub 2019 Dec 14.

28. Cross DJ, Flexman JA, Anzai Y, et al. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. Neuroimage. 2006;32(3):1265-72. doi:10.1016/J.NEUROIMAGE.2006.04.229

29. Siffredi V, Wood AG, Leventer RJ, et al. Anterior and posterior commissures in agenesis of the corpus callosum: Alternative pathways for attention processes? Cortex. 2019;121:454-67. doi:10.1016/J.CORTEX.2019.09.014

30. Robichaux MA, Chenaux G, Ho HYH, et al. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Dev Neurobiol. 2016;76(4):405-20. doi:10.1002/DNEU.22323

31. Abudureyimu S, Asai N, Enomoto A, et al. Essential Role of Linx/Islr2 in the Development of the Forebrain Anterior Commissure. Sci Rep. 2018 May 8;8(1):7292. doi:10.1038/s41598-018-24064-0

32. Hetts SW, Sherr EH, Chao S, et al. Anomalies of the corpus callosum: an MR analysis of the phenotypic spectrum of associated malformations. AJR Am J Roentgenol. 2006;187(5):1343-8. doi:10.2214/AJR.05.0146

33. Mitchell TN, Stevens JM, Free SL, et al. Anterior commissure absence without callosal agenesis: a new brain malformation. Neurology. 2002;58(8):1297-9. doi:10.1212/WNL.58.8.1297

34. Bekov DB. Atlas arteriy i ven golovnogo mozga cheloveka [Atlas of arteries and veins of the human brain]. Moscow: Medicine; 1979 (In Russ.).

35. Ozdemir NG. The Anatomy of the Posterior Commissure. Turk Neurosurg. 2015;25(6):837-43. doi:10.5137/1019-5149.JTN.12122-14.2

36. Perez-Figares JM, Jimenez AJ, Rodriguez EM. Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech. 2001;52:591-607.

37. Johns P. Chapter 3 – Functional neuroanatomy. In: Clinical neuroscience: an illustrated colour text. 2014. P. 27-47.

38. Fiester P, Baig SA, Patel J, Rao D. An Anatomic, Imaging, and Clinical Review of the Medial Longitudinal Fasciculus. J Clin Imaging Sci. 2020;10:83. doi:10.25259/JCIS_49_2020

39. Feroze KB, Patel BC. Parinaud Syndrome. StatPearls Publishing; 2022.

40. Ortiz JF, Eissa-Garces A, Ruxmohan S, et al. Understanding Parinaud's Syndrome. Brain Sci. 2021 Nov 6;11(11):1469. doi:10.3390/brainsci11111469

41. Sciacca S, Lynch J, Davagnanam I, Barker R. Midbrain, Pons, and Medulla: Anatomy and Syndromes. Radiographics. 2019;39(4):1110-25. doi:10.1148/RG.2019180126

42. Gaymard B, Huynh C, Laffont I. Unilateral eyelid retraction. J Neurol Neurosurg Psychiatry. 2000 Mar;68(3):390-2. doi:10.1136/jnnp.68.3.390a

43. Schmidtke K, Büttner-Ennever JA. Nervous control of eyelid function. Brain. 1992;115(1):227-47. doi:10.1093/BRAIN/115.1.227

44. Senova S, Fomenko A, Gondard E, Lozano AM. Anatomy and function of the fornix in the context of its potential as a therapeutic target. J Neurol Neurosurg Psychiatry. 2020;91(5):547-59. doi:10.1136/JNNP-2019-322375

45. Christiansen K, Metzler-Baddeley C, Parker GD, et al. Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: An MRI-diffusion study. Brain Behav. 2016 Nov 22;7(1):e00604. doi:10.1002/brb3.604. eCollection 2017 Jan.

46. Thomas AG, Koumellis P, Dineen RA. The fornix in health and disease: an imaging review. Radiographics. 2011;31(4):1107-21. doi:10.1148/RG.314105729

47. Liu H, Temel Y, Boonstra J, Hescham S. Correction to: The effect of fornix deep brain stimulation in brain diseases. Cell Mol Life Sci. 2020;77(17):3467. doi:10.1007/S00018-020-03589-6

48. Plowey ED, Ziskin JL. Hippocampal phospho-tau/MAPT neuropathology in the fornix in Alzheimer disease: an immunohistochemical autopsy study. Acta Neuropathol Commun. 2016;4(1):114. doi:10.1186/S40478-016-0388-2

49. Oishi K, Mielke MM, Albert M, et al. The fornix sign: a potential sign for Alzheimer's disease based on diffusion tensor imaging. J Neuroimaging. 2012;22(4):365-74. doi:10.1111/J.1552-6569.2011.00633.X

50. Laxton AW, Tang-Wai DF, McAndrews MP, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann Neurol. 2010;68(4):521-34. doi:10.1002/ANA.22089

51. Hescham S, Jahanshahi A, Schweimer JV, et al. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus. Brain Struct Funct. 2016;221(8):4281-6. doi:10.1007/S00429-015-1144-2

52. Sandyk R. Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. Int J Neurosci. 1991;61(3-4):189-219. doi:10.3109/00207459108990738

53. Sandyk R. Pineal and habenula calcification in schizophrenia. Int J Neurosci. 1992;67(1-4):19-30. doi:10.3109/00207459208994773

54. Jhou TC, Fields HL, Baxter MG, et al. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron. 2009;61(5):786-800. doi:10.1016/J.NEURON.2009.02.001

55. Velasquez KM, Molfese DL, Salas R. The role of the habenula in drug addiction. Front Hum Neurosci. 2014 Mar 28;8:174. doi:10.3389/fnhum.2014.00174. eCollection 2014.

56. Cho SE, Park CA, Na KS, et al. Left-right asymmetric and smaller right habenula volume in major depressive disorder on high-resolution 7-T magnetic resonance imaging. PLoS One. 2021 Aug 3;16(8):e0255459. doi:10.1371/journal.pone.0255459. eCollection 2021.

57. Wong AK, Wolfson DI, Borghei A, Sani S. Prevalence of the interthalamic adhesion in the human brain: a review of literature. Brain Struct Funct. 2021;226(8):2481-7. doi:10.1007/S00429-021-02287-8

58. Olry R, Haines DE. NEUROwords. Interthalamic adhesion: scruples about calling a spade a spade? J Hist Neurosci. 2005 Jun;14(2):116-8. doi:10.1080/096470490910128

59. Borghei A, Cothran T, Brahimaj B, Sani S. Role of massa intermedia in human neurocognitive processing. Brain Struct Funct. 2020;225(3):985-93. doi:10.1007/S00429-020-02050-5

60. Haghir H, Mokhber N, Azarpazhooh MR, et al. A magnetic resonance imaging study of adhesio interthalamica in clinical subtypes of schizophrenia. Indian J Psychiatry. 2013;55(2):135. doi:10.4103/0019-5545.111450


Review

Views: 721


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)