Neurology, Neuropsychiatry, Psychosomatics

Advanced search

On the role of glycogen synthase kinases in the molecular mechanisms of stress conditions and prospects for the use of lithium ascorbate

Full Text:


It is well known that a complex of nervous and hormonal signals during stress stimulates adrenal glands to secrete adrenaline, norepinephrine and cortisol. Much less attention has been paid to the roles of intermediate signaling proteins mediating the effects of “stress hormones”, neurotransmitters, and other signaling molecules. This paper presents the results of a systematization of studies of glycogen synthase kinases GSK-3α and GSK-3β, whose excessive activity aggravates the course of chronic stress, has a negative effect on neuronal survival and adaptation processes. Lithium ions are a natural inhibitor of the excessive activity of both GSK-3, which partly determines the normothymic and antidepressant effects of lithium drugs. Taking lithium salts based on organic anions is the safest and most effective way to replenish lithium deficiency in the body. The prospects for the use of lithium ascorbate to increase the body's adaptive reserves are considered. 

About the Authors

I. Yu. Torshin
Institute of Pharmacoinformatics, Federal Research Center “Computer Science and Management”, Russian Academy of Sciences
Russian Federation

44, Vavilova St., Build. 2, Moscow 119333

O. A. Gromova
Institute of Pharmacoinformatics, Federal Research Center “Computer Science and Management”, Russian Academy of Sciences
Russian Federation

44, Vavilova St., Build. 2, Moscow 119333

O. A. Limanova
Ivanovo State Medical Academy, Russian Ministry of Health
Russian Federation

8, Sheremetevskiy Prosp., Ivanovo 153012


1. Selye G. Stress bez distressa [Stress without distress]. Moscow: Progress; 1979. 123 p. (In Russ.)

2. Selye H. What is stress? Metabolism. 1956 Sep;5(5):525-30.

3. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010 Feb;1186:190-222. doi: 10.1111/j.1749-6632.2009.05331.x

4. Lucini D, Pagani M. From stress to functional syndromes: An internist’s point of view. Eur J Intern Med. 2012 Jun;23(4):295-301. doi: 10.1016/j.ejim.2011.11.016. Epub 2011 Dec 22.

5. Pronin AV, Gromova OA, Sardaryan IS, et al. Adaptogenic and neuroprotective effects of lithium ascorbate. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2016;116(12):86-91. doi: 10.17116/jnevro201611612186-9 (In Russ.).

6. Lyoo IK, Dager SR, Kim JE, et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology. 2010 Jul;35(8):1743-50. doi: 10.1038/npp.2010.41. Epub 2010 Mar 31.

7. Liang MH, Chuang DM. Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. J Biol Chem. 2007 Feb 9;282(6):3904-17. doi: 10.1074/jbc.M605178200. Epub 2006 Dec 5.

8. Castro L, Athanazio R, Barbetta M, et al. Central 5-HT2B/2C and 5-HT3 receptor stimulation decreases salt intake in sodium-depleted rats. Brain Res. 2003 Aug 15;981(1-2):151-9. doi: 10.1016/s0006-8993(03)03015-4

9. Hillert MH, Imran I, Zimmermann M, et al. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. Neurochem. 2014 Oct;131(1):42-52. doi: 10.1111/jnc.12787. Epub 2014 Jun 23.

10. Gilmor ML, Skelton KH, Nemeroff CB, Owens MJ. The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. J Pharmacol Exp Ther. 2003 May;305(2):434-9. doi: 10.1124/jpet.102.045419. Epub 2003 Jan 24.

11. Gromova OA, Torshin IYu, Sardaryan IS, et al. Lithium ascorbate improves stress adaptation in in vitro and in vivo models. Farmakokinetika i Farmakodinamika = Pharmacokinetics and Pharmacodynamics. 2016;(3):13-20 (In Russ.).

12. Torshin IYu, Gromova OA, Mayorova LA, Volkov AYu. Targeted proteins involved in the neuroprotective effects of lithium citrate. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(1):78-83. doi: 10.14412/2074-2711-2017-1-78-83 (In Russ.).

13. Chuang DM, Wang Z, Chiu CT. GSK-3 as a Target for Lithium-Induced Neuroprotection Against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Front Mol Neurosci. 2011 Aug 9;4:15. doi: 10.3389/fnmol.2011.00015

14. Motoi Y, Shimada K, Ishiguro K, Hattori N. Lithium and autophagy. ACS Chem Neurosci. 2014 Jun 18;5(6):434-42. doi: 10.1021/cn500056q

15. Bali A, Jaggi AS. Investigations on GSK-3β/NF-κB signaling in stress and stress adaptive behavior in electric foot shock subjected mice. Behav Brain Res. 2016 Apr 1;302:1-10. doi: 10.1016/j.bbr.2016.01.014. Epub 2016 Jan 8.

16. Bali A, Jaggi AS. Anti-stress effects of a GSK-3β inhibitor, AR-A014418, in immobilization stress of variable duration in mice. J Basic Clin Physiol Pharmacol. 2017 Jul 26;28(4):315-25. doi: 10.1515/jbcpp-2016-0157

17. Jin Y, Kanno T, Nishizaki T. Acute restraint stress impairs induction of long-term potentiation by activating GSK-3β. Neurochem Res. 2015 Jan;40(1):36-40. doi: 10.1007/s11064-014-1462-4. Epub 2014 Oct 30.

18. Szymanska M, Suska A, Budziszewska B, et al. Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex. Pharmacol Rep. 2009 Jul-Aug;61(4):612- 20. doi: 10.1016/s1734-1140(09)70113-6

19. Zhang K, Song X, Xu Y, et al. Continuous GSK-3β overexpression in the hippocampal dentate gyrus induces prodepressant-like effects and increases sensitivity to chronic mild stress in mice. J Affect Disord. 2013 Mar 20;146(1):45- 52. doi: 10.1016/j.jad.2012.08.033. Epub 2012 Sep 28.

20. Aceto G, Colussi C, Leone L, et al. Chronic mild stress alters synaptic plasticity in the nucleus accumbens through GSK-3βdependent modulation of Kv4.2 channels. Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8143- 53. doi: 10.1073/pnas.1917423117. Epub 2020 Mar 24.

21. Strekalova T, Markova N, Shevtsova E, et al. Individual Differences in Behavioural Despair Predict Brain GSK-3β Expression in Mice: The Power of a Modified Swim Test. Neural Plast. 2016;2016:5098591. doi: 10.1155/2016/5098591. Epub 2016 Jul 5.

22. Shazo G, Gogoleva IV, Gromova OA, Ullibiev NM. Neurobiology of lithium. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2008;108(S22):49-55 (In Russ.).

23. Hashimoto R, Takei N, Shimazu K, et al. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002 Dec;43(7):1173-9. doi: 10.1016/s0028-3908(02)00217-4

24. Hashimoto R, Hough C, Nakazawa T, et al. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem. 2002 Feb;80(4):589-97. doi: 10.1046/j.0022-3042.2001.00728.x

25. Pepelyaev EA, Semenov VA, Torshin IYu, Gromova OA. Effects of lithium ascorbate in middle-aged patients with stenosing atherosclerosis of brachiocephalic arteries. Farmakokinetika i Farmakodinamika = Pharmacokinetics and Pharmacodynamics. 2018;(4):42-9 (In Russ.).

26. Yang JW, Ru J, Ma W, et al. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides. 2015 Dec;54:35-46. doi: 10.1016/j.npep.2015.08.005

27. Manji HK, Moore GJ, Chen G. Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry. 2000;61 Suppl 9:82-96.

28. Khan A, Jamwal S, Bijjem KRV, et al. Neuroprotective effect of hemeoxygenase1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience. 2015 Feb 26;287:66-77. doi: 10.1016/j.neuroscience.2014.12.018. Epub 2014 Dec 20.

29. Fatima M, Srivastav S, Ahmad MH, Mondal AC. Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: Role of GSK-3β. Sci Rep. 2019 Feb 4;9(1):1305. doi: 10.1038/s41598-018-38085-2

30. Pavlov D, Bettendorff L, Gorlova A, et al. Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry. 2019 Mar 2;90:104-16. doi: 10.1016/j.pnpbp.2018.11.014. Epub 2018 Nov 22.

31. Peng H, Wang HB, Wang L, et al. GSK-3β aggravates the depression symptoms in chronic stress mouse model. J Integr Neurosci. 2018;17(2):169-75. doi: 10.31083/JIN-170050

32. Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun. 2001 Jan 26;280(3):720-5. doi: 10.1006/bbrc.2000.4169

33. Dudev T, Lim C. Competition between Li+ and Mg2+ in metalloproteins. Implications for lithium therapy. J Am Chem Soc. 2011 Jun 22;133(24):9506-15. doi: 10.1021/ja201985s. Epub 2011 May 31.

34. Fan M, Song C, Wang T, et al. Protective effects of lithium chloride treatment on repeated cerebral ischemia-reperfusion injury in mice. Neurol Sci. 2015 Feb;36(2):315-21. doi: 10.1007/s10072-014-1943-x

35. Gavrilovic L, Popovic N, Stojiljkovic V, et al. Effects of mood stabilizer lithium on noradrenergic turnover in the prefrontal cortex of chronically stressed rats. Neuro Endocrinol Lett. 2021 Jul;42(3):171-6.

36. Chang CM, Wu CS, Huang YW, et al. Utilization of Psychopharmacological Treatment Among Patients With Newly Diagnosed Bipolar Disorder From 2001 to 2010. J Clin Psychopharmacol. 2016 Feb;36(1):32-44. doi: 10.1097/JCP.0000000000000440

37. Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacoly. 2005;30(6):1064-75.

38. Khaloo P, Sadeghi B, Ostadhadi S, et al. Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice. Biomed Pharmacother. 2016 Oct;83:1006-15. doi: 10.1016/j.biopha.2016.08.015. Epub 2016 Aug 12.

39. Ebeid MA, Habib MZ, Mohamed AM, et al. Cognitive effects of the GSK-3 inhibitor “lithium” in LPS/chronic mild stress rat model of depression: Hippocampal and cortical neuroinflammation and tauopathy. Neurotoxicology. 2021 Mar;83:77-88. doi: 10.1016/j.neuro.2020.12.016. Epub 2021 Jan 6.

40. Brzozka MM, Havemann-Reinecke U, Wichert SP, et al. Molecular Signatures of Psychosocial Stress and Cognition Are Modulated by Chronic Lithium Treatment. Schizophr Bull. 2016 Jul;42 Suppl 1(Suppl 1):S22-33. doi: 10.1093/schbul/sbv194. Epub 2015 Dec 28.

41. Haj-Mirzaian A, Amiri S, Kordjazy N, et al. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic-pituitaryadrenal axis function. Neuroscience. 2016 Feb 19;315:271-85. doi: 10.1016/j.neuroscience.2015.12.024. Epub 2015 Dec 18.

42. Amiri S, Haj-Mirzaian A, Amini-Khoei H, et al. Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system. Epilepsy Behav. 2016 Aug;61:6-13. doi: 10.1016/j.yebeh.2016.04.035. Epub 2016 May 24.

43. Silva R, Mesquita AR, Bessa J, et al. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase3beta. Neuroscience. 2008 Mar 27;152(3):656- 69. doi: 10.1016/j.neuroscience.2007.12.026. Epub 2007 Dec 23.

44. Lim KY, Yang JJ, Lee DS, et al. Lithium attenuates stress-induced impairment of longterm potentiation induction. Neuroreport. 2005 Sep 28;16(14):1605-8. doi: 10.1097/01.wnr.0000179078.54906.52

45. Popovic N, Stojiljkovic V, Pejic S, et al. Modulation of Hippocampal Antioxidant Defense System in Chronically Stressed Rats by Lithium. Oxid Med Cell Longev. 2019 Feb 17;2019:8745376. doi: 10.1155/2019/8745376. eCollection 2019.

46. Ishii N, Terao T, Hirakawa H. The Present State of Lithium for the Prevention of Dementia Related to Alzheimer's Dementia in Clinical and Epidemiological Studies: A Critical Review. Int J Environ Res Public Health. 2021 Jul 22;18(15):7756. doi: 10.3390/ijerph18157756

47. Poirel C, Larouche B. Circadian patterns of basic emotional reactivity and stress related events revisited in mice treated with lithium: behavioral rhythmometric analyses. Chronobiologia. 1989 Jul-Sep;16(3):229-39.

48. Arushunyan EB. Unikal'nyy melatonin [Unique melatonin]. Stavropol; 2007. 360 p. (In Russ.).

49. Arushunyan EB. Chronopharmacology of lithium preparations. Meditsinskiy vestnik Severnogo Kavkaza = Medical Bulletin of the North Caucasus. 2017;12(2):240-3 (In Russ.).

50. Price JB, Yates CG, Morath BA, et al. Lithium augmentation of ketamine increases insulin signaling and antidepressant-like active stress coping in a rodent model of treatmentresistant depression. Transl Psychiatry. 2021 Nov 25;11(1):598. doi: 10.1038/s41398-021-01716-w

51. Shimodera S, Koike S, Ando S, et al. Lithium levels in tap water and psychotic experiences in a general population of adolescents. Schizophr Res. 2018 Nov;201:294-8. doi: 10.1016/j.schres.2018.05.019. Epub 2018 Jun 9.

52. Cosci F, Chouinard G. Acute and Persistent Withdrawal Syndromes Following Discontinuation of Psychotropic Medications. Psychother Psychosom. 2020;89(5):283-306. doi: 10.1159/000506868. Epub 2020 Apr 7.

53. Ostrenko KS. Fiziologicheskoye obosnovaniye, razrabotka i aprobatsiya novykh litiy soderzhashchikh adaptogenov dlya povysheniya nespetsificheskoy rezistentnosti i produktivnosti zhivotnykh: Avtoref. dis. … dokt. biol. nauk [Physiological substantiation, development and testing of new lithium-containing adaptogens to increase nonspecific resistance and productivity of animals. Author's abstract diss. … doc. biol. sci.]. Dubrovitsy; 2019 (In Russ.).

54. Torshin IYu, Sardaryan IS, Gromova OA, et al. Chemoreactome modeling the effects of anions of lithium salts ascorbate, nicotinate, hydroxybutyrate komenata and lithium carbonate. Farmakokinetika i Farmakodinamika = Pharmacokinetics and Pharmacodynamics. 2016;(3):47-57 (In Russ.).

55. Moretti M, Budni J, Dos Santos DB, et al. Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci. 2013 Jan;49(1):68-79. doi: 10.1007/s12031-012-9892-4. Epub 2012 Oct 3.


For citations:

Torshin I.Yu., Gromova O.A., Limanova O.A. On the role of glycogen synthase kinases in the molecular mechanisms of stress conditions and prospects for the use of lithium ascorbate. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(5):60-68. (In Russ.)

Views: 161

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)