Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Review of human interferons and the potential of their use in the complex therapy of a new coronavirus infection COVID-19

Full Text:


Interferons (IFNs) were first discovered over 60 years ago in a classic experiment by Isaacs and Lindenman showing that type I IFNs have antiviral activity. IFNs are widely used in the treatment of multiple sclerosis, viral hepatitis B and C, and some forms of cancer. Preliminary clinical data support the efficacy of type I IFN against potential pandemic viruses such as Ebola and SARS. Nevertheless, more effective and specific drugs have found their place in the treatment of such diseases. As the COVID-19 (SARS-CoV-2) pandemic is evolving, type I IFN is being re-discussed as one of the main pathogenic drugs, and initial clinical trials have shown promising results in reducing the severity and duration of COVID-19. Although SARS-CoV-2 inhibits the production of IFN-β and prevents a full innate immune response to this virus, it is sensitive to the antiviral activity of externally administered type I IFN. The review presents current data on the classification and mechanisms of action of IFN. Possible options for the optimal use of IFN in the fight against COVID-19 are discussed.

About the Authors

E. V. Granatov
Republican Clinical Neurological Center
Russian Federation

Evgeniy Valerievich Granatov 

13, Vatutina St., Kazan 420021 

A. R. Abashev
Ministry of Health of the Republic of Tatarstan
Russian Federation

11/6, Ostrovskiy St., Kazan 420111 

F. A. Khabirov
Republican Clinical Neurological Center; Kazan State Medical Academy, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation

13, Vatutina St., Kazan 420021

36, Butlerov St., Kazan 420012

A. Ya. Dykhanov
Russian Federation

16/2, Mayakovskiy St., Kaliningrad

T. I. Khaibullin
Republican Clinical Neurological Center; Kazan State Medical Academy, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation

13, Vatutina St., Kazan 420021

36, Butlerov St., Kazan 420012


1. De Andrea M, Ravera R, Gioia D, et al. The interferon system: an overview. Eur J Paed Neurol. 2002;6 Suppl A:A41-6; discussion A55-8. doi: 10.1053/ejpn.2002.0573

2. Parkin J, Cohen B. An overview of the immune system. Lancet. 2001 Jun 2; 357(9270):1777-89. doi: 10.1016/S0140-6736(00)04904-7

3. De Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. J Biol Chem. 2007 Jul 13; 282(28):20053-7. doi: 10.1074/jbc.R700006200. Epub 2007 May 14.

4. Liu YJ. IPC: professional type 1 interferonproducing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23: 275-306. doi: 10.1146/annurev.immunol.23.021704.115633

5. Levy DE, Marie IJ, Durbin JE. Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol. 2011 Dec; 1(6):476-86. doi: 10.1016/j.coviro.2011.11.001

6. Kidd P. Th1/Th2 Balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003 Aug;8(3):223-46.

7. Kalliolias GD, Ivashkiv LB. Overview of the biology of type I interferons. Arthritis Res Ther. 2010;12 Suppl 1(Suppl 1):S1. doi: 10.1186/ar2881. Epub 2010 Apr 14.

8. Vilcek J. Novel interferons. Nat Immunol. 2003 Jan;4(1):8-9. doi: 10.1038/ni0103-8

9. Hermant P, Michiels T Interferon-λ in the context of viral infections: production, response and therapeutic implications. J Innate Immun. 2014;6(5):563-74. doi: 10.1159/000360084. Epub 2014 Apr 17.

10. Espinosa V, Dutta O, McElrath C, et al. Type III interferon is a critical regulator of innate antifungal. Sci Immunol. 2017 Oct 6;2(16):eaan5357. doi: 10.1126/sciimmunol.aan5357

11. Whitehead KA, Dahlman JE, Langer RS, Anderson DG. Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng. 2011;2:77-96. doi: 10.1146/annurev-chembioeng-061010-114133

12. Haller O, Kochs G, Weber F. Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):425-33. doi: 10.1016/j.cytogfr.2007.06.001. Epub 2007 Aug 1.

13. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020 Apr 21; 64(5):e00399-20. doi: 10.1128/AAC.00399-20. Print 2020 Apr 21.

14. Belhadi D, Peiffer-Smadja N, Yazdanpanah Y, et al. A brief review of antiviral drugs evaluated in registered clinical trials for COVID-19. medRxiv. 2020. doi: 10.1101/2020.03.18.20038190.2020.03.18.20038190

15. Gao LL, Yu S, Chen Q, et al. A randomized controlled trial of low-dose recombinant human interferons α-2b nasal spray to prevent acute viral respiratory infections in military recruits. Vaccine. 2010 Jun 17;28(28):4445-51. doi: 10.1016/j.vaccine.2010.03.062. Epub 2010 Apr 13.

16. Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003 Dec 24;290(24):3222-8. doi: 10.1001/jama.290.24.3222

17. Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 2014 Nov;14(11):1090-5. doi: 10.1016/S1473-3099(14)70920-X. Epub 2014 Sep 29. Erratum in: Lancet Infect Dis. 2015 Jan 15;211(2):13.

18. Jakimovski D, Kolb C, Ramanathan M, et al. Interferon β for multiple sclerosis. Cold Spring Harb Perspect Med. 2018 Nov 1;8(11): a032003. doi: 10.1101/cshperspect.a032003

19. Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020 Mar;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924. Epub 2020 Feb 17.

20. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006 Sep;3(9):e343. doi: 10.1371/journal.pmed.0030343

21. Chan JFW, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERSCoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015 Dec 15;212(12): 1904-13. doi: 10.1093/infdis/jiv392. Epub 2015 Jul 21.

22. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020 Jan 10;11(1):222. doi: 10.1038/s41467-019-13940-6

23. Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004 Sep;31(1):69-75. doi: 10.1016/j.jcv.2004.03.003

24. Morgenstern B, Michaelis M, Baer PC, et al. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun. 2005 Jan 28;326(4): 905-8. doi: 10.1016/j.bbrc.2004.11.128

25. Sainz B Jr, Mossel EC, Peters CJ, Garry RF. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology. 2004 Nov 10;329(1): 11-7. doi: 10.1016/j.virol.2004.08.011

26. Scagnolari C, Vicenzi E, Bellomi F, et al. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir Ther. 2004 Dec;9(6):1003-11.

27. Falzarano D, De Wit E, Martellaro C, et al. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep. 2013;3:1686. doi: 10.1038/srep01686

28. Arabi YM, Shalhoub S, Al-Omari A, et al. Effect of ribavirin and interferon on the outcome of critically ill patients with MERS. Am J Respir Crit Care Med. 2017;195:A6067.

29. Zhao Z, Zhang F, Xu M, et al. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol. 2003 Aug;52(Pt 8):715-20. doi: 10.1099/jmm.0.05320-0

30. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis. 2014 Mar;20:42-6. doi: 10.1016/j.ijid.2013.12.003. Epub 2014 Jan 6.

31. Shalhoub S, Farahat F, Al-Jiffri A, et al. IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J Antimicrob Chemother. 2015 Jul;70(7):2129-32. doi: 10.1093/jac/dkv085. Epub 2015 Apr 21.

32. Hensley LE, Fritz EA, Jahrling PB, et al. Interferon-β 1a and SARS coronavirus replication. Emerg Infect Dis. 2004 Feb;10(2):317-9. doi: 10.3201/eid1002.030482

33. Chan JFW, Chan KH, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect. 2013 Dec;67(6):606-16. doi: 10.1016/j.jinf.2013.09.029. Epub 2013 Oct 3.

34. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov Ther. 2020;14(1):58-60. doi: 10.5582/ddt.2020.01012

35. Hart BJ, Dyall J, Postnikova E, et al. Interferon-β and mycophenolic acid are potent inhibitors of middle east respiratory syndrome coronavirus in cell-based assays. J Gen Virol. 2014 Mar;95(Pt 3):571-7. doi: 10.1099/vir.0.061911-0. Epub 2013 Dec 9.

36. Bellingan G, Maksimow M, Howell DC, et al. The effect of intravenous interferon-beta- 1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: an open-label study. Lancet Respir Med. 2014 Feb;2(2):98-107. doi: 10.1016/S2213-2600(13)70259-5. Epub 2013 Dec 23.

37. Ranieri VM, Pettilä V, Karvonen MK, et al; INTEREST Study Group. Effect of Intravenous Interferon β-1a on Death and Days Free From Mechanical Ventilation Among Patients With Moderate to Severe Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2020 Feb 25;323(8):725-33. doi: 10.1001/jama.2019.22525

38. Channappanavar R, Fehr AR, Zheng J, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019 Jul 29; 129(9):3625-39. doi: 10.1172/JCI126363

39. Park A, Iwasaki A. Type I and Type III Interferons – Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe. 2020;27(6):870-8. doi:10.1016/j.chom.2020.05.008

40. Frieman M, Yount B, Heise M, et al. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/golgi membrane. J Virol. 2007 Sep;81(18):9812-24. doi: 10.1128/JVI.01012-07. Epub 2007 Jun 27.

41. Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, et al. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007 Jan; 81(2):548-57. doi: 10.1128/JVI.01782-06. Epub 2006 Nov 15.

42. Lokugamage KG, Schindewolf C, Menachery VD. SARS-CoV-2 sensitive to type I interferon pretreatment. BioRxiv. 2020;26: 24-8. doi: 10.1101/2020.03.07.982264

43. Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020 Jun;16(3):219-21. doi: 10.1007/s12519-020-00344-6. Epub 2020 Feb 5.

44. Menachery VD, Yount BL Jr, Josset L, et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity. J Virol. 2014 Apr; 88(8):4251-64. doi: 10.1128/JVI.03571-13. Epub 2014 Jan 29.

45. Thiel V, Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008 Apr;19(2): 121-32. doi: 10.1016/j.cytogfr.2008.01.001. Epub 2008 Mar 5.

46. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020 May;39(5):405-7. doi: 10.1016/j.healun.2020.03.012. Epub 2020 Mar 20.

47. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28; 395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11. Erratum in: Lancet. 2020 Mar 28;395(10229):1038.

48. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun. 2020 Jul;87:59-73. doi: 10.1016/j.bbi.2020.04.046. Epub 2020 Apr 22.

49. Mager DE, Jusko WJ. Receptor-mediated pharmacokinetic/pharmacodynamic model of interferon-β1a in humans. Pharm Res. 2002 Oct;19(10):1537-43. doi: 10.1023/a:1020468902694

50. Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009 Sep 17;461(7262):399-401. doi: 10.1038/nature08309. Epub 2009 Aug 16.

51. Kumaki Y, Salazar AM, Wandersee MK, Barnard DL. Prophylactic and therapeutic intranasal administration with an immunomodulator, Hiltonol® (Poly IC:LC), in a lethal SARS-CoV-infected BALB/c mouse model. Antiviral Res. 2017 Mar;139:1-12. doi: 10.1016/j.antiviral.2016.12.007


For citations:

Granatov E.V., Abashev A.R., Khabirov F.A., Dykhanov A.Y., Khaibullin T.I. Review of human interferons and the potential of their use in the complex therapy of a new coronavirus infection COVID-19. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(1S):38-44. (In Russ.)

Views: 125

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)