New potential biomarkers of Alzheimer's disease: markers of endothelial dysfunction and neuroinflammation.
https://doi.org/10.14412/2074-2711-2022-2-35-42
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The aim of the work was
Objective: to determine the relationship between laboratory biomarkers in blood plasma and cerebrospinal fluid (CSF) in patients with AD and indicators of neuropsychological testing.
Patients and methods. 52 patients with AD were examined, in which the concentration of 90 potential biomarkers were measured in blood plasma and CSF. Neuropsychological assessment included the Mini-Mental State Exam (MMSE), Frontal Assessment Battery (FAB), Montreal Cognitive Assessment (MoCA), and etc.
Results and discussion. Correlations of different strength between the values of biomarkers in blood plasma and CSF and the results of neuropsychological assessment were revealed. A correlation was found between the soluble cell adhesion molecule (sICAM-1) in blood plasma and the largest number of neuropsychological tests sensitive to dementia stages (MoCA, MMSE, FAB) in patients with AD at the dementia stage. A correlation was found between the concentration of growth/differentiation factor 15 and interferon γ in blood plasma and FAB scores in patients with AD. The levels of granulocyte colony-stimulating factor (G-CSF) in CSF were associated with the dementia stage in AD, and the interleukin-1 receptor antagonist (IL-1RA) levels, on the contrary, with stages preceding the development of dementia in AD.
Conclusion. sICAM-1 level in blood plasma, which is a marker of endothelial dysfunction, may be an indicator of the severity of the vascular neurodegenerative process in AD at the dementia stage. G-CSF in the CSF is associated with the dementia stage in AD, and IL-1RA – with the pre-dementia stage of AD, which determines the prospect of their further study as diagnostic markers.
About the Authors
A. K. MinochkinRussian Federation
Ales Konstantinovich Minochkin
9, Borisova St., Sestroretsk, Saint Petersburg 197706, Russia
6, Academician Lebedev St., Saint Petersburg 194044, Russia
V. Yu. Lobzin
Russian Federation
6, Academician Lebedev St., Saint Petersburg 194044, Russia
41, Kirochnaya St., Saint Petersburg 191015, Russia
N. N. Suchentseva
Russian Federation
9, Borisova St., Sestroretsk, Saint Petersburg 197706, Russia
O. S. Popov
Russian Federation
9, Borisova St., Sestroretsk, Saint Petersburg 197706, Russia
7-9, Universitetskaya Embankment, Saint Petersburg 199034, Russia
S. V. Apalko
Russian Federation
9, Borisova St., Sestroretsk, Saint Petersburg 197706, Russia
S. G. Sherbak
Russian Federation
9, Borisova St., Sestroretsk, Saint Petersburg 197706, Russia
7-9, Universitetskaya Embankment, Saint Petersburg 199034, Russia
References
1. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US); 2016. Available from: www.ncbi.nlm.nih.gov/books/NBK326791/ (accessed 22.09.2017).
2. Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018 Feb;243(3):213-21. doi: 10.1177/1535370217750088
3. Jack CR Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging- Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):257-62. doi: 10.1016/j.jalz.2011.03.004. Epub 2011 Apr 21.
4. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging- Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):270-9. doi: 10.1016/j.jalz.2011.03.008. Epub 2011 Apr 21.
5. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging- Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):280-92. doi: 10.1016/j.jalz.2011.03.003. Epub 2011 Apr 21.
6. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263-9. doi: 10.1016/j.jalz.2011.03.005. Epub 2011 Apr 21.
7. Molinuevo JL, Gispert JD, Dubois B, et al. The AD-CSF-index discriminates Alzheimer's disease patients from healthy controls: a validation study. J Alzheimers Dis. 2013;36(1):67-77. doi: 10.3233/JAD-130203
8. Bayer AJ. The role of biomarkers and imaging in the clinical diagnosis of dementia. Age Ageing. 2018;0:1-3. doi: 10.1093/ageing/afy004
9. Ritchie C, Smailagic N, Noel-Storr AH, et al. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017 Mar 22;3(3):CD010803. doi: 10.1002/14651858.CD010803.pub2
10. Song F, Poljak A, Smythe GA, Sachdev P. Plasma biomarkers for mild cognitive impairment and Alzheimer's disease. Brain Res Rev. 2009 Oct;61(2):69-80. doi: 10.1016/j.brainresrev.2009.05.003. Epub 2009 May 21.
11. Bazenet C, Lovestone S. Plasma biomarkers for Alzheimer's disease: much needed but tough to find. Biomark Med. 2012 Aug;6(4):441-54. doi: 10.2217/bmm.12.48
12. Hanon O, Vidal JS, Lehmann S, et al; BALTAZAR study group. Plasma amyloid levels within the Alzheimer's process and correlations with central biomarkers. Alzheimers Dement. 2018 Jul;14(7):858-68. doi: 10.1016/j.jalz.2018.01.004. Epub 2018 Feb 17.
13. Britschgi M, Wyss-Coray T. Systemic and acquired immune responses in Alzheimer's disease. Int Rev Neurobiol. 2007;82:205-33. doi: 10.1016/S0074-7742(07)82011-3
14. Xiu MH, Lin CG, Tian L, et al. Increased IL-3 serum levels in chronic patients with schizophrenia: Associated with psychopathology. Psychiatry Res. 2015 Sep 30;229(1-2):225-9. doi: 10.1016/j.psychres.2015.07.029. Epub 2015 Jul 16.
15. Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004 Jun;5(6):575-81. doi: 10.1038/ni1078
16. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006 Sep;12(9):1005-15. doi: 10.1038/nm1484
17. Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci. 2018 Mar 21;12:72. doi: 10.3389/fncel.2018.00072. Erratum in: Front Cell Neurosci. 2020 Feb 03;13:578.
18. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000 May-Jun;21(3):383-421. doi: 10.1016/s0197-4580(00)00124-x
19. Teixeira AL, Reis HJ, Coelho FM, et al. All-or-nothing type biphasic cytokine production of human lymphocytes after exposure to Alzheimer's beta-amyloid peptide. Biol Psychiatry. 2008 Nov 15;64(10):891-5. doi: 10.1016/j.biopsych.2008.07.019. Epub 2008 Aug 30.
20. Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2003 Sep;74(9):1200-5. doi: 10.1136/jnnp.74.9.1200
21. Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y). 2018 Sep 6;4:575-90. doi: 10.1016/j.trci.2018.06.014
22. Chee SEJ, Solito E. The Impact of Ageing on the CNS Immune Response in Alzheimer's Disease. Front Immunol. 2021 Sep 17;12:738511. doi: 10.3389/fimmu.2021.738511
23. Ogunmokun G, Dewanjee S, Chakraborty P, et al. The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells. 2021 Oct 18;10(10):2790. doi: 10.3390/cells10102790
24. Krabbe G, Halle A, Matyash V, et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One. 2013;8(4):e60921. doi: 10.1371/journal.pone.0060921. Epub 2013 Apr 8.
25. Michelucci A, Heurtaux T, Grandbarbe L, et al. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 2009 May 29;210(1-2):3-12. doi: 10.1016/j.jneuroim.2009.02.003. Epub 2009 Mar 9.
26. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci. 2008 Aug 13;28(33):8354-60. doi: 10.1523/JNEUROSCI.0616-08.2008
27. Qin C, Li Y, Wang K. Functional Mechanism of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Animal Models with Alzheimer's Disease: Inhibition of Neuroinflammation. J Inflamm Res. 2021 Sep 17;14:4761-75. doi: 10.2147/JIR.S327538
28. Angiulli F, Conti E, Zoia CP, et al. Blood- Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery? Diagnostics (Basel). 2021 Aug 24;11(9):1525. doi: 10.3390/diagnostics11091525
29. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189-98. doi: 10.1016/0022-3956(75)90026-6
30. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000 Dec 12;55(11):1621-6. doi: 10.1212/wnl.55.11.1621
31. Nasreddine ZS, Phillips NA, Bеdirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi: 10.1111/j.1532-5415.2005.53221.x. Erratum in: J Am Geriatr Soc. 2019 Sep;67(9):1991.
32. Llinas-Regla J, Vilalta-Franch J, Lopez-Pousa S, et al. The Trail Making Test. Assessment. 2017 Mar;24(2):183-96. doi: 10.1177/1073191115602552. Epub 2016 Jul 28.
33. Castilhos RM, Chaves ML. Free and Cued Selective Reminding Test sensitivity. Alzheimers Dement (Amst). 2017 Nov 26;10:75. doi: 10.1016/j.dadm.2017.11.005
34. Burgette LF, Reiter JP. Multiple imputation for missing data via sequential regression trees. Am J Epidemiol. 2010 Nov 1;172(9):1070-6. doi: 10.1093/aje/kwq260. Epub 2010 Sep 14.
35. Müllner D. Modern hierarchical, agglomerative clustering algorithms. Computer science; 2011. Available from: http://dblp.unitrier.de/db/journals/corr/corr1109.html#abs-1109-2378
36. Conte M, Ostan R, Fabbri C, et al. Human Aging and Longevity Are Characterized by High Levels of Mitokines. J Gerontol A Biol Sci Med Sci. 2019 Apr 23;74(5):600-7. doi: 10.1093/gerona/gly153
37. Kim DH, Lee D, Lim H, et al. Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer's disease. Biochem Biophys Res Commun. 2018 Oct 12;504(4):933-40. doi: 10.1016/j.bbrc.2018.09.012. Epub 2018 Sep 14.
38. Wu PF, Zhang XH, Zhou P, et al. Growth Differentiation Factor 15 Is Associated With Alzheimer's Disease Risk. Front Genet. 2021 Aug 13;12:700371. doi: 10.3389/fgene.2021.700371
39. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. Oxid Med Cell Longev. 2018 Jan 31;2018:6435861. doi: 10.1155/2018/6435861
40. Lobzin VYu. Sosudisto-neyrodegenerativnyye kognitivnyye narusheniya (patogenez, klinicheskiye proyavleniya, rannyaya i differentsial'naya diagnostika): Avtoref. diss. … dokt. med. nauk [Vascular-neurodegenerative cognitive disorders (pathogenesis, clinical manifestations, early and differential diagnosis): Abstract of the thesis. diss. … doc. med. sci.]. St. Petersburg; 2016. P. 33 (In Russ.).
41. Taipa R, das Neves SP, Sousa AL, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer's disease and their correlation with cognitive decline. Neurobiol Aging. 2019 Apr;76:125-32. doi: 10.1016/j.neurobiolaging.2018.12.019. Epub 2019 Jan 7.
42. Motta C, Finardi A, Toniolo S, et al. Protective Role of Cerebrospinal Fluid Inflammatory Cytokines in Patients with Amnestic Mild Cognitive Impairment and Early Alzheimer's Disease Carrying Apolipoprotein E4 Genotype. J Alzheimers Dis. 2020;76(2):681-9. doi: 10.3233/JAD-191250
43. Musella A, Fresegna D, Rizzo FR, et al. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets. 2020 Jan;24(1):37-46. doi: 10.1080/14728222.2020.1709823. Epub 2020 Jan 3.
44. Clausen BH, Lambertsen KL, Dagaes-Hansen F, et al. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol. 2016 May;131(5):775-91. doi: 10.1007/s00401-016-1541-5. Epub 2016 Feb 9.
45. Oprica M, Hjorth E, Spulber S, et al. Studies on brain volume, Alzheimer-related proteins and cytokines in mice with chronic overexpression of IL-1 receptor antagonist. J Cell Mol Med. 2007 Jul-Aug;11(4):810-25. doi: 10.1111/j.1582-4934.2007.00074.x
46. Spulber S, Mateos L, Oprica M, et al. Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J Neuroimmunol. 2009 Mar 31;208(1-2):46-53. doi: 10.1016/j.jneuroim.2009.01.010. Epub 2009 Feb 10.
Review
For citations:
Minochkin AK, Lobzin VY, Suchentseva NN, Popov OS, Apalko SV, Sherbak SG. New potential biomarkers of Alzheimer's disease: markers of endothelial dysfunction and neuroinflammation. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):35-42. (In Russ.) https://doi.org/10.14412/2074-2711-2022-2-35-42