Association between redox imbalance, pterin metabolism markers, and early extrapyramidal side effects of antipsychotics in schizophrenia: pilot study
https://doi.org/10.14412/2074-2711-2022-2-18-25
Abstract
Antipsychotics (AP) administration in schizophrenia patients is associated with several side effects (SE), in particular, with extrapyramidal (EP). Data suggests that oxidative damage to dopaminergic neurons in the EP system may be related to tardive dyskinesia and Parkinson's disease (PD) development, although data on the role of oxidative stress in the development of early EPSE of AP is lacking. Another poorly studied hypothesis of the EP-symptoms pathogenesis considers disorders of folate (pterin) metabolism.
Objective: to evaluate the relationship between redox imbalance and pterin metabolism with the severity of early EPSE caused by AP used in the schizophrenia treatment.
Patients and methods. The study included 50 patients with the first episode of schizophrenia. EP symptoms were evaluated using the UKU Side-Effect Rating Scale (“UKU-SERS-Clin” version). The levels of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), aldehyde-2,4-dinitrophenylhydrazone, ketone-2,4-dinitrophenylhydrazone were assessed in blood plasma; levels of BH4, folate, cobalamin (vitamin B12), and homocysteine – in blood serum; superoxide dismutase (SOD) and catalase activity – in erythrocytes.
Results and discussion. EPSE severity was inversely proportional inversely proportional to the GSH level and directly proportional to the SOD activity. EPSE severity was also associated with AP selectivity, but not with their dosages. However, AP selectivity was not associated with studied biochemical parameters. MDA level in patients prescribed with amantadine was lower than in other participants.
Conclusion. Early AP-induced EPSE were associated with redox imbalance, which indicates the necessity for further research aiming at prevention of secondary neurodegenerative diseases in patients with schizophrenia receiving AP.
About the Authors
T. V. ZhilyaevaRussian Federation
Tatiana Vladimirovna Zhilyaeva
10/1, Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia
3, Bekhterev St., Saint Petersburg 192019, Russia
D. S. Shvachkina
Russian Federation
10/1, Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia
A. S. Piatoikina
Russian Federation
41, Ulianova St., Nizhny Novgorod 603155, Russia
E. S. Zhukova
Russian Federation
20, Semashko St., Nizhny Novgorod 603105, Russia
O. V. Kostina
Russian Federation
10/1, Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia
T. G. Shcherbatyuk
Russian Federation
20, Semashko St., Nizhny Novgorod 603105, Russia
3, Nauki Prosp., Pushchino 142290, Moscow region, Russia
G. E. Mazo
Russian Federation
3, Nauki Prosp., Pushchino 142290, Moscow region, Russia
References
1. Potkin SG, Kane JM, Correll CU, et al. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 2020 Jan 7;6(1):1. doi: 10.1038/s41537-019-0090-z
2. Saddichha S, Kumar R, Babu GN, Chandra P. Aripiprazole Associated With Acute Dystonia, Akathisia, and Parkinsonism in a Single Patient. J Clin Pharmacol. 2012 Sep;52(9):1448-9. doi: 10.1177/0091270011414573. Epub 2011 Sep 8.
3. Caroff SN, Campbell EC. Drug-Induced Extrapyramidal Syndromes: Implications for Contemporary Practice. Psychiatr Clin North Am. 2016 Sep;39(3):391-411. doi: 10.1016/j.psc.2016.04.003. Epub 2016 Jun 23.
4. Druschky K, Bleich S, Grohmann R, et al. Severe parkinsonism under treatment with antipsychotic drugs. Eur Arch Psychiatry Clin Neurosci. 2020 Feb;270(1):35-47. doi: 10.1007/s00406-019-01060-7. Epub 2019 Aug 23.
5. Fedorova NV, Vetokhina TN. Diagnostika i lecheniye neyrolepticheskikh ekstrapiramidnykh sindromov: Uchebno-metodicheskoye posobiye [Diagnostics and treatment of neuroleptic extrapyramidal syndromes: Teaching aid]. Moscow: RMAPO; 2006 (In Russ.).
6. Shireen E. Experimental treatment of antipsychotic-induced movement disorders. J Exp Pharmacol. 2016 Aug 8;8:1-10. doi: 10.2147/JEP.S63553
7. Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012 Feb 15;7(5):376-85. doi: 10.3969/j.issn.1673-5374.2012.05.009
8. Ward KM, Citrome L. Antipsychotic- Related Movement Disorders: Drug-Induced Parkinsonism vs. Tardive Dyskinesia-Key Differences in Pathophysiology and Clinical Management. Neurol Ther. 2018 Dec;7(2):233-48. doi: 10.1007/s40120-018-0105-0. Epub 2018 Jul 19.
9. Wu YL, Ding XX, Sun YH, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and susceptibility to Parkinson's disease: a meta-analysis. J Neurol Sci. 2013 Dec 15;335(1-2):14-21. doi: 10.1016/j.jns.2013.09.006. Epub 2013 Sep 12.
10. Zhilyaeva TV, Akimova EV, Blagonravova AS, Mazo GE. The interaction of folate cycle enzyme genes and the risk of extrapyramidal side effects of antipsychotics. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020;12(6):54-60. doi: 10.14412/2074-2711-2020-6-54-60 (In Russ.).
11. Atmaca G. Antioxidant effects of sulfurcontaining amino acids. Yonsei Med J. 2004 Oct 31;45(5):776-88. doi: 10.3349/ymj.2004.45.5.776
12. Dietrich-Muszalska A, Malinowska J, Olas B, et al. The oxidative stress may be induced by the elevated homocysteine in schizophrenic patients. Neurochem Res. 2012 May;37(5):1057-62. doi: 10.1007/s11064-012-0707-3. Epub 2012 Jan 24.
13. Goff DC, Bottiglieri T, Arning E, et al. Folate, homocysteine, and negative symptoms in schizophrenia. Am J Psychiatry. 2004 Sep;161(9):1705-8. doi: 10.1176/appi.ajp.161.9.1705
14. Moore AP, Behan PO, Jacobson W, Armarego WL. Biopterin in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1987 Jan;50(1):85-7. doi: 10.1136/jnnp.50.1.85
15. Van Strien AM, Keijsers CJ, Derijks HJ, van Marum RJ. Rating scales to measure side effects of antipsychotic medication: A systematic review. J Psychopharmacol. 2015 Aug;29(8):857-66. doi: 10.1177/0269881115593893. Epub 2015 Jul 8.
16. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497-509.
17. Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78. doi: 10.1016/0076-6879(90)86141-h
18. Dubinina EE, Burmistrov SO, Khodov DA, Porotov IG. Oxidative modification of human serum proteins. A method of determining it. Voprosy meditsinskoi khimii. 1995 Jan-Feb;41(1):24-6 (In Russ.).
19. Libin LYa, Ivanov MV, Eshchenko ND, et al. On the study of the mechanisms of oxidative stress in patients with paranoid schizophrenia paroxysmal receiving antipsychotic medication. Psihiatriya i psihofarmakoterapiya. 2012;14(5):19-25 (In Russ.).
20. Danivas V, Venkatasubramanian G. Current perspectives on chlorpromazine equivalents: Comparing apples and oranges! Indian J Psychiatry. 2013 Apr;55(2):207-8. doi: 10.4103/0019-5545.111475
21. Ermakov EA, Dmitrieva EM, Parshukova DA, et al. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid Med Cell Longev. 2021 Jan 23;2021:8881770. doi: 10.1155/2021/8881770
22. Ooi SL, Green R, Pak SC. N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence. Biomed Res Int. 2018 Oct 22;2018:2469486. doi: 10.1155/2018/2469486
23. Bardgett ME, Wrona CT, Newcomer JW, Csernansky JG. Subcortical excitatory amino acid levels after acute and subchronic administration of typical and atypical neuroleptics. Eur J Pharmacol. 1993 Jan 19;230(3):245-50. doi: 10.1016/0014-2999(93)90557-x
24. Libin LYa, Dagaev SG, Kubarskaja LG, Eschenko ND. The effects of disturbance in neuromediator systems on lipid peroxidation and superoxide dismutase activity in rat brain cortex, hippocampus and striatum. Vestnik Sankt-Petersburgskogo universiteta. Ser. 3. 2012;(3):98-105 (In Russ.).
25. Zhilyaeva TV, Piatoikina AS, Bavrina AP, et al. Homocysteine in Schizophrenia: Independent Pathogenetic Factor with Prooxidant Activity or Integral Marker of Other Biochemical Disturbances? Schizophr Res Treatment. 2021 Oct 13;2021:7721760. doi: 10.1155/2021/7721760
26. Harris ED. Regulation of antioxidant enzymes. J Nutr. 1992 Mar;122(3 Suppl):625-6. doi: 10.1093/jn/122.suppl_3.625
27. Fitzmaurice PS, Tong J, Yazdanpanah M, et al. Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine. J Pharmacol Exp Ther. 2006 Nov;319(2):703-9. doi: 10.1124/jpet.106.109173. Epub 2006 Jul 20.
28. Uzbekov MG. Lipid peroxidation and antioxidant systems in mental illness. Message II. Social'naya i klinicheskaya psihiatriya. 2015;25(4):92-101 (In Russ.).
29. Semennov IV, Zhilyaeva TV, Kasyanov ED, et al. Association of tetrahydrobiopterin deficiency with disturbances in one-carbon metabolism in patients with schizophrenia. Schizophr Res. 2021 Mar;229:132-3. doi: 10.1016/j.schres.2020.11.023. Epub 2020 Nov 21.
Review
For citations:
Zhilyaeva TV, Shvachkina DS, Piatoikina AS, Zhukova ES, Kostina OV, Shcherbatyuk TG, Mazo GE. Association between redox imbalance, pterin metabolism markers, and early extrapyramidal side effects of antipsychotics in schizophrenia: pilot study. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):18-25. (In Russ.) https://doi.org/10.14412/2074-2711-2022-2-18-25