Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Effect of vitamin D and other indicators of phosphorus-calcium metabolism on cognitive functions and quality of life in patients with Parkinson's disease

https://doi.org/10.14412/2074-2711-2022-1-38-44

Full Text:

Abstract

Parkinson’s disease (PD) is a multifactorial neurodegenerative disease. Consequently, there has been growing interest in identifying early preclinical disease symptoms and searching for their laboratory markers in recent decades.

Objective: to studythe relationship between vitamin D levels, phosphorus-calcium metabolism and clinical manifestations of PD.

Patients and methods. Serum levels of total vitamin D (VD), as well as total calcium, ionized calcium, alkaline phosphatase (AP), inorganic phosphorus, and parathyroid hormone (PTH) were assessed in 138 patients with PD. The severity of the disease was verified according to the Hoehn-Yar criteria, the clinical symptoms of the disease were verified using the Unified PD Rating Scale (UPDRS), the evaluation also included the quality of life (QoL) scales for patients with PD (PDQ-39), anxiety and depression (HADS), and Beck depression inventory, assessment of cognitive functions (CF) according to MoCA. Then, we analyzed the effect of vitamin D levels and other indicators of phosphorus-calcium metabolism on the severity of PD clinical symptoms.

Results and discussion. Patients with PD had a significant impact of phosphorus-calcium metabolism on CF, assessed by MoCA scale and the PDQ-39 subscale “Cognitive functions”. A joint direct impact of vitamin D levels (β=0.111; p=0.002), PTH (β=0.02; p=0.037) and the indirect effect of AP (β=-0.028; p=0.027) on CF was revealed. A direct effect of the level of inorganic phosphorus (β=5.932; p=0.001) and AP (β=0.055; p=0.025) on the QoL of patients with PD was observed.

Conclusion. Cognitive decline in PD patients is directly related to vitamin D and PTH levels. At the same time, the lower the QoL of patients with PD, the lower the serum vitamin D level was, serving as an early predictor of cognitive decline in patients with PD. 

About the Authors

D. A. Novotnyy
Regional Center for Extrapyramidal Diseases with Botulinum Toxin Therapy Room
Russian Federation

42, Serebrennikovskaya St., Novosibirsk 630099



N. G. Zhukova
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2, Moskovsky High Road, Tomsk 634050



L. P. Shperling
Regional Center for Extrapyramidal Diseases with Botulinum Toxin Therapy Room
Russian Federation

42, Serebrennikovskaya St., Novosibirsk 630099



V. A. Stolyarova
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2, Moskovsky High Road, Tomsk 634050



I. A. Zhukova
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2, Moskovsky High Road, Tomsk 634050



A. E. Agasheva
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2, Moskovsky High Road, Tomsk 634050



S. V. Shtaimets
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2, Moskovsky High Road, Tomsk 634050



O. A. Druzhinina
Regional Center for Extrapyramidal Diseases with Botulinum Toxin Therapy Room
Russian Federation

42, Serebrennikovskaya St., Novosibirsk 630099



I. V. Shirokikh
Ya.L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of Russia
Russian Federation

17, Frunze St., Novosibirsk 630091



References

1. Delamarre A, Meissner GW. Epidemiology, environmental risk factors and genetics of Parkinson's disease. Presse Med. 2017 Mar;46(2 Pt 1):175-81. doi: 10.1016/j.lpm.2017.01.001. Epub 2017 Feb 8.

2. Rimmelzwaan LM, Schoor NM, Lips P, et al. Systematic Review of the Relationship between Vitamin D and Parkinson's Disease. J Parkinsons Dis. 2016;6(1):29-37. doi: 10.3233/JPD-150615

3. Bivona G, Agnello L, Bellia C, et al. Non-Skeletal Activities of Vitamin D: From Physiology to Brain Pathology. Medicina (Kaunas). 2019 Jul 5;55(7):341. doi: 10.3390/medicina55070341

4. Wang X, Shen N, Lu Y, Tan K. Vitamin D receptor polymorphisms and the susceptibility of Parkinson's disease. Neurosci Lett. 2019 Apr 23;699:206-11. doi: 10.1016/j.neulet.2019.02.018. Epub 2019 Feb 11.

5. Barichella M, Cereda E, Iorio L, et al. Clinical correlates of serum 25-hydroxyvitamin D in Parkinson's disease. Nutr Neurosci. 2020 Nov 5;1-9. doi: 10.1080/1028415X.2020.1840117. Online ahead of print.

6. Bivona G, Gambino MC, Iacolino G, Ciaccio M. Vitamin D and the nervous system. Neurol Res. 2019 Sep;41(9):827-35. doi: 10.1080/01616412.2019.1622872. Epub 2019 May 30.

7. DeLuca GC, Kimball SM, Kolasinski J, et al. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol. 2013 Aug;39(5):458-84. doi: 10.1111/nan.12020

8. Eyles DW, Smith S, Kinobe R, et al. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005 Jan;29(1):21-30. doi: 10.1016/j.jchemneu.2004.08.006

9. Fullard ME, Duda JE. A Review of the Relationship Between Vitamin D and Parkinson Disease Symptoms. Front Neurol. 2020 May 27;11:454. doi: 10.3389/fneur.2020.00454

10. Peterson AL, Murchison C, Zabetian C, et al. Memory, mood, and vitamin D in persons with Parkinson's disease. J Parkinsons Dis. 2013;3(4):547-55. doi: 10.3233/JPD-130206

11. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience. 2011 Dec 15;198:221-31. doi: 10.1016/j.neuroscience.2011.08.045. Epub 2011 Aug 25.

12. Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr. 2013 May;97(5):1004-13. doi: 10.3945/ajcn.112.051664. Epub 2013 Mar 13.

13. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease. A clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):181-4. doi: 10.1136/jnnp.55.3.181

14. Martinez-Martin P, Rodriguez-Blazquez C, Alvarez M, et al. Parkinson's disease severity levels and MDS-Unified Parkinson's Disease Rating Scale. Parkinsonism Relat Disord. 2015 Jan;21(1):50-4. doi: 10.1016/j.parkreldis.2014.10.026. Epub 2014 Nov 5.

15. Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology. 2001 Nov;57(10 Suppl 3):S11-26.

16. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi: 10.1111/j.1532- 5415.2005.53221.x

17. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983 Jun;67(6):361-70. doi: 10.1111/j.1600-0447.1983.tb09716.x

18. Beck AT, Ward C, Mendelson M. Beck Depression Inventory (BDI). Arch Gen Psychiatry. 1961 Jun;4:561-71. doi: 10.1001/archpsyc.1961.01710120031004

19. Bushnell DM, Martin ML. Quality of life and Parkinson's disease: translation and validation of the US Parkinson's Disease Questionnaire (PDQ-39). Qual Life Res. 1999 Jun;8(4):345-50. doi: 10.1023/a:1008979705027

20. Holick MF, Binkley NC, Bischoff-Ferrari HA. Evaluation, treatment and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011 Jul;96(7):1911-30. doi: 10.1210/jc.2011-0385. Epub 2011 Jun 6.

21. Belinda B, Peat J. Medical statistics: a guide to SPSS, data analysis, and critical appraisal. 2nd ed. Wiley, UK; 2014.

22. Lister T. Nutrition and Lifestyle Interventions for Managing Parkinson's Disease: A Narrative Review. J Mov Disord. 2020 May;13(2):97-104. doi: 10.14802/jmd.20006. Epub 2020 May 29.

23. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017 Jun;18(2):153-65. doi: 10.1007/s11154-017-9424-1

24. Gatto NM, Paul KC, Sinsheimer JS, et al. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease. J Neurol Sci. 2016 Nov 15;370:100-6. doi: 10.1016/j.jns.2016.09.013. Epub 2016 Sep 11.

25. Taghizadeh M, Talaei SA, Djazayeri A, Salami M. Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer's disease. Nutr Neurosci. 2014 Jul;17(4):172-7. doi: 10.1179/1476830513Y.0000000080. Epub 2013 Nov 26.

26. Sanchez B, Relova JL, Gallego R, et al. 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. Neurosci Res. 2009 Feb 15;87(3):723-32. doi: 10.1002/jnr.21878

27. Sato Y, Kikuyama M, Oizumi K. High prevalence of vitamin D deficiency and reduced bone mass in Parkinson’s disease. Neurology. 1997 Nov;49(5):1273-8. doi: 10.1212/wnl.49.5.1273

28. Samavarchi TS, Sarfi M, Yousefi T, et al. Comparison of the calcium-related factors in Parkinson's disease patients with healthy individuals. Caspian J Intern Med. Winter 2020;11(1):28-33. doi: 10.22088/cjim.11.1.28

29. May HT, Bair TL, Lappe DL, et al. Association of vitamin D levels with incident depression among a general cardiovascular population. Am Heart J. 2010 Jun;159(6):1037-43. doi: 10.1016/j.ahj.2010.03.017


Review

For citations:


Novotnyy D.A., Zhukova N.G., Shperling L.P., Stolyarova V.A., Zhukova I.A., Agasheva A.E., Shtaimets S.V., Druzhinina O.A., Shirokikh I.V. Effect of vitamin D and other indicators of phosphorus-calcium metabolism on cognitive functions and quality of life in patients with Parkinson's disease. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(1):38-44. (In Russ.) https://doi.org/10.14412/2074-2711-2022-1-38-44

Views: 369


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)