Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Pathobiochemical pathways of redox imbalance in the neurological long-term effects of COVID-19 and the role of chondroitin sulfate in the redox status restoration

https://doi.org/10.14412/2074-2711-2021-5-109-115

Full Text:

Abstract

The review examines the epidemiology and clinical manifestations of COVID-19 long-term neurological effects, main pathobiochemical mechanisms, and integrated circuits of redox status impairment in COVID-19, such as the decrease of adenosine triphosphate production, fatty acids levels, acylcarnitine, and amino acids, impairment of oxidative phosphorylation and glycolysis, hypometabolic state, redox imbalance with the increase of peroxides and superoxides, isoprostanes, the decrease of α-tocopherol, substances reacting with thiobarbituric acid, increased nitrosative stress with the increase of inducible synthase of nitric oxide, nitric oxide, peroxynitrite, and nitrate. Neuroprotective approaches aimed at suppressing excitotoxicity, oxidative stress, and neuroinflammation are presented. Recent data on the relationship between mechanisms of chondroitin sulfate and its derivatives (chondroitin sulfate glycoprotein disaccharide) neuroprotective effects and characteristics of their chemical structure are analyzed. The mechanism of action and neuroprotective effects of chondroitin sulfate and its derivatives in fatigue syndrome in patients with SARS-CoV2 infection are discussed (regulation of the PKC/PI3K/Akt activity, the increase of heme oxygenase-1 level, the decrease of reactive oxygen species). The position that chondroitin sulfate and its derivatives can become promising drugs to prevent the long-term neurological effects of COVID-19 is reasoned.

About the Authors

I. V. Sarvilina
Medical Centre «Novomeditsina»
Russian Federation

Irina Vladislavovna Sarvilina

74, Sotsialisticheskaya St., Rostov-on-Don 344002



O. A. Gromova
Federal Research Center «Informatics and Management», Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Big Data Storage and Analysis Center, National Center for Digital Economy

42, Vavilova St., Build. 2, Moscow 119333
27, Lomonosovsky Prosp., Build. 1, Moscow 119192



A. V. Naumov
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

16, First Leonov St., Moscow 129226



References

1. Available from: https://www.who.int/ru/emergencies/diseases/novel-coronavirus-2019

2. Yu C. Study Probes the ‘Long Haul’ effects of COVID-19. Johns Hopkins University Hub. 2021. Available from: https://hub.jhu.edu/2021/03/22/long-covid-long-haulers/ (accessed 25.04.2021).

3. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 31;69(30):993-8. doi: 10.15585/mmwr.mm6930e1

4. Jones JF, Ray CG, Minnich LL, et al. Evidence for active Epstein-Barr virus infection in patientswith persistent, unexplained illnesses: elevated anti-early antigen antibodies. Ann Intern Med. 1985 Jan;102(1):1-7. doi: 10.7326/0003-4819-102-1-7

5. Wray BB, Gaughf C, Chandler Jr FW, et al. Detection of Epstein-Barr virus and cytomegalovirus in patients with chronic fatigue. Ann Allergy. 1993 Sep;71(3):223-6.

6. Komaroff AL. Is human herpesvirus-6 a trigger for chronic fatigue syndrome? J Clin Virol. 2006 Dec;37 Suppl 1:S39-46. doi: 10.1016/S1386-6532(06)70010-5

7. Fraternale A, Paoletti MF, Casabianca A, et al. GSH and analogs in antiviral therapy. Mol Aspects Med. Feb-Apr 2009;30(1-2):99-110. doi: 10.1016/j.mam.2008.09.001. Epub 2008 Sep 27.

8. Camini FC, da Silva Caetano CC, Almeida LT, de Brito Magalhaes CL. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017 Apr;162(4):907-17. doi: 10.1007/s00705-016-3187-y. Epub 2016 Dec 30.

9. Rank N, Michel C, Haertel C, et al. N-acetylcysteine increases liver blood flow and improves liver function in septic shock patients: results of a prospective, randomized, double-blind study. Crit Care Med. 2000 Dec;28(12):3799-807. doi: 10.1097/00003246-200012000-00006

10. Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008 Nov;11(6):733-40. doi: 10.1097/MCO.0b013e32831394b8

11. Urata Y, Honma S, Goto S, et al. Melatonin induces gamma-glutamylcysteinesynthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med. 1999 Oct;27(7-8):838-47. doi: 10.1016/s0891-5849(99)00131-8

12. Harris E, Schulzke SM, Patole SK. Pentoxifylline in preterm neonates: a systematic review. Paediatr Drugs. 2010 Oct 1;12(5):301-11. doi: 10.2165/11532600-000000000-00000

13. Barinov AN, Moshkhoeva LS, Parkhomenko EV, et al. Clinical features, pathogenesis and treatment of long-haul COVID-19 impact on nervous system. Meditsinskiy alfavit = Medical alphabet. 2021;(3):14-22. doi: 10.33667/2078-5631-2021-3-14-22 (In Russ.).

14. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021 Aug 9;11(1):16144. doi: 10.1038/s41598-021-95565-8

15. World Health Organization (1969). Manual of the International Statistical Classification of Diseases, Injuries, Causes of Death Based on the Recommendations of the Eighth Revision Conference (PDF). 2 (Eighth ed.). Geneva: WHO. p. 173. Available from: https://me-pedia.org/wiki/Epidemic_myalgic_encephalomyelitis (accessed 25.04.2021).

16. Davis HE, Assaf GS, McCorkell L, et al. Characterizing Long COVID in an international cohort: 7 months of symptoms and their impact. medRxiv. 2020;12.24.20248802. doi: 10.1101/2020.12.24.20248802

17. Klopfenstein T, Kadiane-Oussou NJ, Toko L, et al. Features of anosmia in COVID-19. Med Mal Infect. 2020. doi:10.1016/j.medmal.2020.04.006 [Epub ahead of print].

18. Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Board on the Health of Select Populations; Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Washington (DC): National Academies Press (US); 2015 Feb 10.

19. Nakatomi Y, Mizuno K, Ishii A, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med. 2014 Jun;55(6):945-50. doi: 10.2967/jnumed.113.131045. Epub 2014 Mar 24.

20. Tak LM, Cleare AJ, Ormel J, et al. Meta-analysis and meta-regression of hypothalamic-pituitary-adrenal axis activity in functional somatic disorders. Biol Psychol. 2011 May;87(2):183-94. doi: 10.1016/j.biopsycho.2011.02.002. Epub 2011 Feb 18.

21. Van Campen CLMC, Rowe PC, Visser FC. Cerebral blood flow is reduced in severe myalgic encephalomyelitis/chronic fatigue syndrome patients during mild orthostatic stress testing: an exploratory study at 20 degrees of head-up tilt testing. Healthcare (Basel). 2020 Jun 13;8(2):169. doi: 10.3390/healthcare8020169

22. Baraniuk JN, Casado B, Maibach H, et al. A chronic fatigue syndrome – related proteome in human cerebrospinal fluid. BMC Neurol. 2005 Dec 1;5:22. doi: 10.1186/1471-2377-5-22

23. Sotzny F, Blanco J, Capelli E, et al. Myalgic encephalomyelitis/chronic fatigue syndrome evidence for an autoimmune disease. Autoimmun Rev. 2018 Jun;17(6):601-9. doi: 10.1016/j.autrev.2018.01.009. Epub 2018 Apr 7.

24. Jones DE, Hollingsworth KG, Jakovljevic DG, et al. Loss of capacity to recover from acidosis n repeat exercise in chronic fatigue syndrome: a casecontrol study. Eur J Clin Investig. 2012 Feb;42(2):186-94. doi: 10.1111/j.1365-2362.2011.02567.x. Epub 2011 Jul 12.

25. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020 Sep 3;383(10):989-92. doi: 10.1056/NEJMc2019373. Epub 2020 Jun 12.

26. Lersy F, Benotmane I, Helms J, et al. Cerebrospinal fluid features in COVID-19 patients with neurologic manifestations: correlation with brain MRI findings in 58 patients. J Infect Dis. 2021 Feb 24;223(4):600-9. doi: 10.1093/infdis/jiaa745

27. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020 Apr 1;11(7):995-8. doi: 10.1021/acschemneuro.0c00122. Epub 2020 Mar 13.

28. Lapina CMR, Peschanski D, Mesmoudi S. The potential genetic network of human brain SARS-CoV-2 infection. bioRxiv. 2020.

29. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020 Jun;92(6):552-5. doi: 10.1002/jmv.25728. Epub 2020 Mar 11.

30. Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020 May;35(5):744-8. doi: 10.1111/jgh.15047. Epub 2020 Apr 19.

31. Glass CK, Saijo K, Winner B, et al. Mechanisms Underlying Inflammation in Neurodegeneration. Cell. 2010 Mar 19;140(6):918-34. doi: 10.1016/j.cell.2010.02.016

32. Takeuchi H. Roles of glial cells in neuroinflammation and neurodegeneration. Clin Exp Neuroimmunol. 2013;4:2-16. doi: 10.1111/cen3.12059

33. Gallagher PG. Hemolytic anemias: red blood cell membrane and metabolic defects. In: Goldman L, Schafer AI, editors. Goldman-Cecil Medicine. 25 th ed. Philadelphia, PA: Elsevier Saunders; 2016.

34. Janz DR, Bastarache JA, Sills G, et al. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Crit Care. 2013 Nov 14;17(6):R272. doi: 10.1186/cc13108

35. Curry FE. Layer upon layer: The functional consequences of disrupting the glycocalyxendothelial barrier in vivo and in vitro. Cardiovasc Res. 2017 May 1;113(6):559-61. doi: 10.1093/cvr/cvx044

36. Yamano E, Sugimoto M, Hirayama A, et al. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Sci Rep. 2016 Oct 11;6:34990. doi: 10.1038/srep34990

37. Armstrong CW, McGregor NR, Lewis DP, et al. Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics. 2015;11:1626-39. doi: 10.1007/s11306-015-0816-5

38. Naviaux RK. Metabolic features and regulation of the healing cycle – a new model for chronic disease pathogenesis and treatment. Mitochondrion. 2019 May;46:278-97. doi: 10.1016/j.mito.2018.08.001. Epub 2018 Aug 9.

39. Maes M, Kubera M, Uytterhoeven M, et al. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Sci Monit. 2011 Apr;17(4):SC11-5. doi: 10.12659/msm.881699

40. Robinson M, Gray SR, Watson MS, et al. Plasma IL-6, its soluble receptors and F2-isoprostanes at rest and during exercise in chronic fatigue syndrome. Scand J Med. Sci Sports. 2010 Apr;20(2):282-90. doi: 10.1111/j.16000838.2009.00895.x. Epub 2009 Apr 13.

41. Miwa K, Fujita M. Increased oxidative stress suggested by low serum vitamin E concentrations in patients with chronic fatigue syndrome. Int J Cardiol. 2009 Aug 14;136(2):238-9. doi: 10.1016/j.ijcard.2008.04.051. Epub 2008 Aug 6.

42. Fenouillet E, Vigouroux A, Steinberg JG, et al. Association of biomarkers with healthrelated quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2016 Aug 31;14(1):251. doi: 10.1186/s12967-016-1010-x

43. Suarez A, Guillamo E, Roig T, et al. Nitric oxide metabolite production during exercise in chronic fatigue syndrome: a case-control study. J Women’s Health (Larchmt). 2010 Jun;19(6):1073-7. doi: 10.1089/jwh.2008.1255

44. Paula BD, Lemled MD, Komaroffe AL, Solomon H. Snyder Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. PNAS. 2021 Aug 24;118(34):e2024358118. doi: 10.1073/pnas.2024358118

45. Yang X, Zhang Y, Xu H, et al. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem. 2016;16(8):858-66. doi: 10.2174/1568026615666150827095252

46. Kappert K, Jahic A, Tauber R. Assessment of serum ferritin as a biomarker in COVID-19: Bystander or participant? Insights by comparison with other infectious and non-infectious diseases. Biomarkers. 2020 Dec;25(8):616-25. doi: 10.1080/1354750X.2020.1797880. Epub 2020 Nov 24.

47. Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020 Jul 9;182(1):59-72.e15. doi: 10.1016/j.cell.2020.05.032. Epub 2020 May 28.

48. Manuel y Keenoy B, Moorkens G, Vertommen J, De Leeuw I. Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci. 2001 Mar 16;68(17):2037-49. doi: 10.1016/s0024-3205(01)01001-3

49. Song JW, Lam SM, Fan X, et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab. 2020 Aug 4;32(2):188-202.e5. doi: 10.1016/j.cmet.2020.06.016. Epub 2020 Jun 24.

50. Ponti G, Ruini C, Tomasi A. Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19. Med Hypotheses. 2020 Oct;143:109859. doi: 10.1016/j.mehy.2020.109859. Epub 2020 May 21.

51. Regland B, Andersson M, Abrahamsson L, et al. Increased concentrations of homocysteine in the cerebrospinal fluid in patients with fibromyalgia and chronic fatigue syndrome. Scand J Rheumatol. 1997;26(4):301-7. doi: 10.3109/03009749709105320

52. Abouhashem AS, Singh K, Azzazy HME, Sen CK. Is low alveolar type II cell SOD3 in the lungs of elderly linked to the observed severity of COVID-19? Antioxid Redox Signal. 2020 Jul 10;33(2):59-65. doi: 10.1089/ars.2020.8111. Epub 2020 May 8.

53. Kurup RK, Kurup PA. Hypothalamic digoxin, cerebral chemical dominance and myalgic encephalomyelitis. Int J Neurosci. 2003 May;113(5):683-701. doi: 10.1080/00207450390200026

54. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-9. doi: 10.1001/jama.2020.1585

55. Brenu EW, Huth TK, Hardcastle SL, et al. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol. 2014 Apr;26(4):233-42. doi: 10.1093/intimm/dxt068. Epub 2013 Dec 16.

56. Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021 Jan 7;184(1):149-168.e17. doi: 10.1016/j.cell.2020.11.025. Epub 2020 Nov 19.

57. Lemle MD. Hypothesis: Chronic fatigue syndrome is caused by dysregulation of hydrogen sulfide metabolism. Med Hypotheses. 2009 Jan;72(1):108-9. doi: 10.1016/j.mehy.2008.08.003. Epub 2008 Sep 16.

58. Renieris G, Katrini K, Damoulari C, et al. Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 coronavirus. Shock. 2020 Nov;54(5):633-7. doi: 10.1097/SHK.0000000000001562

59. Blackstone E, Morrison M, Roth M. B. H2S induces a suspended animation-like state in mice. Science. 2005 Apr 22;308(5721):518. doi: 10.1126/science.1108581

60. Thomas T, Stefanoni D, Reisz JA, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020 Jul 23;5(14):e140327. doi: 10.1172/jci.insight.140327

61. Heer CD, Sanderson DJ, Voth LS, et al. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. J Biol Chem. 2020 Dec 25;295(52):17986-96. doi: 10.1074/jbc.RA120.015138. Epub 2020 Oct 13.

62. Kennedy G, Spence VA, McLaren M, et al. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med. 2005 Sep 1;39(5):584-9. doi: 10.1016/j.freeradbiomed.2005.04.020

63. Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020 Jul 10;6(7):1558-62. doi: 10.1021/acsinfecdis.0c00288. Epub 2020 May 28.

64. Rhodes JM, Subramanian S, Laird E, et al. Perspective: Vitamin D deficiency and COVID-19 severity – plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2, and thrombosis. J Intern Med. 2021 Jan;289(1):97-115. doi: 10.1111/joim.13149. Epub 2020 Jul 22.

65. Aoki T, Miyakoshi H, Usuda Y, Herberman RB. Low NK syndrome and its relationship to chronic fatigue syndrome. Clin Immunol Immunopathol. 1993 Dec;69(3):253-65. doi: 10.1006/clin.1993.1178

66. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020 Jun 1;111(6):1297-9. doi: 10.1093/ajcn/nqaa095

67. Chiscano-Camon L, Ruiz-Rodriguez JC, Ruiz-Sanmartin A, et al. Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Crit Care. 2020 Aug 26;24(1):522. doi: 10.1186/s13054-020-03249-y

68. Kennedy G, Khan F, Hill A, et al. Biochemical and vascular aspects of pediatric chronic fatigue syndrome. Arch Pediatr Adolesc Med. 2010 Sep;164(9):817-23. doi: 10.1001/archpediatrics.2010.157

69. Miwa K, Fujita M. Fluctuation of serum vitamin E (alpha-tocopherol) concentrations during exacerbation and remission phases in patients with chronic fatigue syndrome. Heart Vessels. 2010 Jul;25(4):319-23. doi: 10.1007/s00380-009-1206-6. Epub 2010 Jul 31.

70. Erol SA, Tanacan A, Anuk AT, et al. Evaluation of maternal serum afamin and vitamin E levels in pregnant women with COVID-19 and its association with composite adverse perinatal outcomes. J Med Virol. 2021 Apr;93(4):2350-8. doi: 10.1002/jmv.26725. Epub 2020 Dec 23.

71. Vecchiet J, Cipollone F, Falasca K, et al. Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. Neurosci Lett. 2003 Jan 2;335(3):151-4. doi: 10.1016/s0304-3940(02)01058-3

72. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0. Epub 2020 Mar 16.

73. Rolls A, Avidan H, Cahalon L, et al. A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice. Eur J Neurosci. 2004 Oct;20(8):1973-83. doi: 10.1111/j.1460-9568.2004.03676.x

74. Rolls A, Cahalon L, Bakalash S, et al. A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB J. 2006 Mar;20(3):547-9. doi: 10.1096/fj.05-4540fje. Epub 2006 Jan 5.

75. Morawski M, Bruckner MK, Riederer P, et al. Perineuronal nets potentially protect against oxidative stress. Exp Neurol. 2004 Aug;188(2):309-15. doi: 10.1016/j.expneurol.2004.04.017

76. Canas N, Valero T, Villarroya M, et al. Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing hemeoxygenase-1via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther. 2007 Dec;323(3):946-53. doi: 10.1124/jpet.107.123505. Epub 2007 Sep 20.

77. Sivasankaran R, Pei J, Wang KC, et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci. 2004 Mar;7(3):261-8. doi: 10.1038/nn1193. Epub 2004 Feb 8.

78. Sato Y, Nakanishi K, Tokita Y, et al. A highly sulfated chondroitin sulfate preparation, CS-E, prevents excitatory aminoacidinduced neuronal cell death. J Neurochem. 2008 Mar;104(6):1565-76. doi: 10.1111/j.1471-4159.2007.05107.x. Epub 2007 Nov 7.

79. Gromova OA, Torshin IYu, Semenov VA, et al. On the neurological roles of chondroitin sulfate and glucosamine sulfate: a systematic analysis. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):137-43. (In Russ.). https://doi.org/10.14412/2074-2711-2019-3-137-143


For citation:


Sarvilina I.V., Gromova O.A., Naumov A.V. Pathobiochemical pathways of redox imbalance in the neurological long-term effects of COVID-19 and the role of chondroitin sulfate in the redox status restoration. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(5):109-115. (In Russ.) https://doi.org/10.14412/2074-2711-2021-5-109-115

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)