Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Influence of von Willebrand factor on common pathophysiological mechanisms of cerebrovascular diseases and multiple sclerosis

https://doi.org/10.14412/2074-2711-2021-1S-62-68

Full Text:

Abstract

Endothelial dysfunction is a universal pathological mechanism underlying or contributing to the development/progression of many diseases, including cerebrovascular disease and multiple sclerosis. Von Willebrand factor is a multimeric glycoprotein synthesized by endothelial cells and megakaryocytes that participates in a range of physiological and pathological processes, including primary hemostasis and coagulation. It also regulates secretion and transport of a variety of molecules, exerts a proinflammatory effect, modulates angiogenesis and smooth muscle mitotic activity, influences atherogenesis. In this review, we discuss the synthesis, secretion, and regulation of the von Willebrand factor within the context of endothelial dysfunction and other common mechanisms that play a significant role in brain tissue damage in cerebrovascular diseases and multiple sclerosis.

About the Authors

I. A. Koltsov
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Ivan Alekseevich Koltsov

Department of Neuroimmunology

1, Ostrovityanov St., Moscow 117997
1, Ostrovityanov St., Build 10, Moscow 117997



M. Yu. Martynov
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Department of Neuroimmunology

1, Ostrovityanov St., Moscow 117997
1, Ostrovityanov St., Build 10, Moscow 117997



A. N. Yasamanova
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

1, Ostrovityanov St., Moscow 117997



I. A. Shchukin
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Department of Neuroimmunology

1, Ostrovityanov St., Moscow 117997
1, Ostrovityanov St., Build 10, Moscow 117997



M. S. Fidler
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

1, Ostrovityanov St., Moscow 117997



A. N. Boyko
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center of Brain and Neurotechnologies, FMBA of Russia
Russian Federation

Department of Neuroimmunology

1, Ostrovityanov St., Moscow 117997
1, Ostrovityanov St., Build 10, Moscow 117997



References

1. Wannamethee SG, Whincup PH, Lennon L, et al. Fibrin D-Dimer, Tissue-Type Plasminogen Activator, von Willebrand Factor, and Risk of Incident Stroke in Older Men. Stroke. 2012;43(5):1206-11. doi: 10.1161/STROKEAHA.111.636373

2. Williams SR, Hsu F-C, Keene KL, et al. Genetic Drivers of von Willebrand Factor Levels in an Ischemic Stroke Population and Association With Risk for Recurrent Stroke. Stroke. 2017;48(6):1444-50. doi: 10.1161/STROKEAHA.116.015677

3. Tzoulaki I, Murray GD, Lee AJ, et al. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke – The Edinburgh Artery Study. Circulation. 2007;115(16):2119-27. doi: 10.1161/CIRCULATIONAHA.106.635029

4. Dubchenko E, Ivanov A, Spirina N, et al. Hyperhomocysteinemia and Endothelial Dysfunction in Multiple Sclerosis. Brain Sci. 2020;10(9):E637. doi: 10.3390/brain-sci10090637

5. Lenting PJ, Casari C, Christophe OD, Denis CV. Von Willebrand factor: the old, the new and the unknown. J Thromb Haemost. 2012;10(12):2428-37. doi: 10.1111/jth.12008

6. Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395-424. doi: 10.1146/annurev.biochem.67.1.395

7. Vischer UM. Von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost. 2006;4(6):1186-93. doi: 10.1111/j.1538-7836.2006.01949.x

8. Wagner D, Olmsted J, Marder V. Immunolocalization of Von-Willebrand Protein in Weibel-Palade Bodies of Human-Endothelial Cells. J Cell Biol. 1982;95(1):355-60. doi: 10.1083/jcb.95.1.355

9. Romani de Wit T, Rondaij MG, Hordijk PL, et al. Real-time imaging of the dynamics and secretory behavior of Weibel-Palade bodies. Arterioscler Thromb Vasc Biol. 2003;23(5):755-61. doi: 10.1161/01.ATV.0000069847.72001.E8

10. Harrison P, Cramer E. Platelet Alpha-Granules. Blood Rev. 1993;7(1):52-62. doi: 10.1016/0268-960X(93)90024-X

11. Veljkovic DK, Cramer EM, Alimardani G, et al. Studies of alpha-granule proteins in cultured human megakaryocytes. Thromb Haemost. 2003;90(5):844-52. doi: 10.1160/TH03-02-0125

12. Lenting PJ, Christophe OD, Denis CV. Von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019-28. doi: 10.1182/blood-2014-06-528406

13. Galbusera M, Zoja C, Donadelli R, et al. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood. 1997;90(4):1558-64.

14. Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11-8. doi: 10.1182/blood-2008-02-078170

15. Zhou WH, Inada M, Lee TP, et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest. 2005;85(6):780-8. doi: 10.1038/labinvest.3700275

16. Feys HB, Anderson PJ, Vanhoorelbeke K, et al. Multi-step binding of ADAMTS-13 to von Willebrand factor. J Thromb Haemost. 2009;7(12):2088-95. doi: 10.1111/j.1538-7836.2009.03620.x

17. Muia J, Zhu J, Gupta G, et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A. 2014;111(52):18584-9. doi: 10.1073/pnas.1413282112

18. Song J, Chen F, Campos M, et al. Quantitative Influence of ABO Blood Groups on Factor VIII and Its Ratio to von Willebrand Factor, Novel Observations from an ARIC Study of 11,673 Subjects. Plos One. 2015;10(8):e0132626. doi: 10.1371/journal.pone.0132626

19. Konkle BA. Von Willebrand Factor and Aging. Semin Thromb Hemost. 2014;40(6):640-4. doi: 10.1055/s-0034-1389079

20. Kokame K, Sakata T, Kokubo Y, Miyata T. Von Willebrand factor-to-ADAMTS13 ratio increases with age in a Japanese population. J Thromb Haemost. 2011;9(7):1426-8. doi: 10.1111/j.1538-7836.2011.04333.x

21. Inoue O, Suzuki-Inoue K, Ozaki Y. Redundant mechanism of platelet adhesion to laminin and collagen under flow – Involvement of von Willebrand factor and glycoprotein Ib-IX-V. J Biol Chem. 2008;283(24):16279-82. doi: 10.1074/jbc.C700241200

22. Rauch A, Wohner N, Christophe OD, et al. On the Versatility of von Willebrand Factor. Mediterr J Hematol Infect Dis. 2013;5(1):e2013046. doi: 10.4084/MJHID.2013.046

23. Bendetowicz AV, Wise RJ, Gilbert GE. Collagen-bound von Willebrand factor has reduced affinity for factor VIII. J Biol Chem. 1999;274(18):12300-7. doi: 10.1074/jbc.274.18.12300

24. Keuren JFW, Magdeleyns EJP, Bennaghmouch A, et al. Microparticles adhere to collagen type I, fibrinogen, von Willebrand factor and surface immobilised platelets at physiological shear rates. Br J Haematol. 2007;138(4):527-33. doi: 10.1111/j.1365-2141.2007.06650.x

25. Reininger AJ. Platelet function under high shear conditions. Hämostaseologie. 2009;29(1):21-4. doi: 10.1055/s-0037-1616934

26. Chen Y, Xiao Y, Lin Z, et al. The Role of Circulating Platelets Microparticles and Platelet Parameters in Acute Ischemic Stroke Patients. J Stroke Cerebrovasc Dis. 2015;24(10):2313-20. doi: 10.1016/j.jstroke-cerebrovasdis.2015.06.018

27. Huang M, Hu Y-Y, Dong X-Q. High concentrations of procoagulant microparticles in the cerebrospinal fluid and peripheral blood of patients with acute basal ganglia hemorrhage are associated with poor outcome. Surg Neurol. 2009;72(5):481-9. doi: 10.1016/j.surneu.2008.12.016

28. Marcos-Ramiro B, Oliva Nacarino P, Serrano-Pertierra E, et al. Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci. 2014;15:110. doi: 10.1186/1471-2202-15-110

29. Jy W, Jimenez JJ, Mauro LM, et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. J Thromb Haemost. 2005;3(6):1301-8. doi: 10.1111/j.1538-7836.2005.01384.x

30. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci. 2005;118(4):771-80. doi: 10.1242/jcs.01653

31. Starke RD, Ferraro F, Paschalaki KE, et al. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011;117(3):1071-80. doi: 10.1182/blood-2010-01-264507

32. Li Z, Korhonen EA, Merlini A, et al. Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS. J Clin Invest. 2020;130(4):1977-90. doi: 10.1172/JCI130308

33. Qin F, Impeduglia T, Schaffer P, Dardik H. Overexpression of von Willebrand factor is an independent risk factor for pathogenesis of intimal hyperplasia: Preliminary studies. J Vasc Surg. 2003;37(2):433-9. doi: 10.1067/mva.2003.63

34. Zhang X, Meng H, Blaivas M, et al. Von Willebrand Factor Permeates Small Vessels in CADASIL and Inhibits Smooth Muscle Gene Expression. Transl Stroke Res. 2012;3(1):138-45. doi: 10.1007/s12975-011-0112-2

35. Michaux G, Pullen TJ, Haberichter SL, Cutler DF. P-selectin binds to the D'-D3 domains of von Willebrand factor in WeibelPalade bodies. Blood. 2006;107(10):3922-4. doi: 10.1182/blood-2005-09-3635

36. Denis CV, Andre P, Saffaripour S, Wagner DD. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proc Natl Acad Sci USA. 2001;98(7):4072-7. doi: 10.1073/pnas.061307098

37. Gragnano F, Sperlongano S, Golia E, et al. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediators Inflamm. 2017;2017:5620314. doi: 10.1155/2017/5620314

38. Khan MM, Motto DG, Lentz SR, Chauhan AK. ADAMTS13 reduces VWF-mediated acute inflammation following focal cerebral ischemia in mice. J Thromb Haemost. 2012;10(8):1665-71. doi: 10.1111/j.1538-7836.2012.04822.x

39. Pendu R, Terraube V, Christophe OD, et al. P-selectin glycoprotein ligand 1 and beta 2integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006;108(12):3746-52. doi: 10.1182/blood-2006-03-010322

40. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880-5. doi: 10.1073/pnas.1005743107

41. Rondaij MG, Bierings R, Kragt A, et al. Dynamics and Plasticity of Weibel-Palade Bodies in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2006;26(5):1002-7. doi: 10.1161/01.ATV.0000209501.56852.6c

42. Bierings R, van den Biggelaar M, Kragt A, et al. Efficiency of von Willebrand factor-mediated targeting of interleukin-8 into Weibel-Palade bodies. J Thromb Haemost. 2007;5(12):2512-9. doi: 10.1111/j.1538-7836.2007.02768.x

43. Bernardo A, Ball C, Nolasco L, et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104(1):100-6. doi: 10.1182/blood-2004-01-0107

44. Knipe L, Meli A, Hewlett L, et al. A revised model for the secretion of tPA and cytokines from cultured endothelial cells. Blood. 2010;116(12):2183-91. doi: 10.1182/blood-2010-03-276170

45. Arumugam TV, Woodruff TM, Lathia JD, et al. Neuroprotection in Stroke by Complement Inhibition and Immunoglobulin Therapy. Neuroscience. 2009;158(3):1074-89. doi: 10.1016/j.neuro-science.2008.07.015

46. Turner NA, Moake J. Assembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large Von Willebrand Factor Links Complement and Hemostasis-Thrombosis. Plos One. 2013;8(3):e59372. doi: 10.1371/journal.pone.0059372

47. Feng S, Liang X, Cruz MA, et al. The Interaction between Factor H and Von Willebrand Factor. Plos One. 2013;8(8):e73715. doi: 10.1371/journal.pone.0073715

48. Feng S, Liang X, Kroll MH, et al. Von Willebrand factor is a cofactor in complement regulation. Blood. 2015;125(6):1034-7. doi: 10.1182/blood-2014-06-585430

49. Ingram G, Hakobyan S, Robertson NP, Morgan BP. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin Exp Immunol. 2009;155(2):128-39. doi: 10.1111/j.1365-2249.2008.03830.x

50. Zagorac D, Yamaura K, Zhang C, et al. The effect of superoxide anion on autoregulation of cerebral blood flow. Stroke. 2005;36(12):2589-94. doi: 10.1161/01.STR.0000189997.84161.95

51. Chen B, Cheng Q, Yang K, Lyden PD. Thrombin Mediates Severe Neurovascular Injury During Ischemia. Stroke. 2010;41(10):2348-52. doi: 10.1161/STROKEAHA.110.584920

52. Sonneveld MAH, Franco OH, Ikram MA, et al. Von Willebrand Factor, ADAMTS13, and the Risk of Mortality – The Rotterdam Study. Arterioscler Thromb Vasc Biol. 2016;36(12):2446-51. doi: 10.1161/ATVBAHA.116.308225

53. Wieberdink RG, van Schie MC, Koudstaal PJ, et al. High von Willebrand Factor Levels Increase the Risk of Stroke – The Rotterdam Study. Stroke. 2010;41(10):2151-6. doi: 10.1161/STROKEAHA.110.586289

54. Sonneveld MAH, de Maat MPM, Portegies MLP, et al. Low ADAMTS13 activity is associated with an increased risk of ischemic stroke. Blood. 2015;126(25):2739-46. doi: 10.1182/blood-2015-05643338

55. Blann AD, Naqvi T, Waite M, Mccollum CN. Von Willebrand factor and endothelial damage in essential hypertension. J Hum Hypertens. 1993;7(2):107-11.

56. Brandes RP. Endothelial Dysfunction and Hypertension. Hypertension. 2014;64(5):924-8. doi: 10.1161/HYPERTENSIONAHA.114.03575

57. Frankel DS, Meigs JB, Massaro JM, et al. Von Willebrand Factor, Type 2 Diabetes and Risk of Cardiovascular Disease: The Framingham Offspring Study. Circulation. 2008;118(24):2533-9. doi: 10.1161/CIRCULATIONAHA.108.792986

58. Van Galen KPM, Tuinenburg A, Smeets EM, Schutgens REG. Von Willebrand factor deficiency and atherosclerosis. Blood Rev. 2012;26(5):189-96. doi: 10.1016/j.blre.2012.05.002

59. Gandhi C, Ahmad A, Wilson KM, Chauhan AK. ADAMTS13 modulates atherosclerotic plaque progression in mice via a VWF-dependent mechanism. J Thromb Haemost. 2014;12(2):255-60. doi: 10.1111/jth.12456

60. Sonneveld MAH, van Dijk AC, van den Herik EG, et al. Relationship of Von Willebrand Factor with carotid artery and aortic arch calcification in ischemic stroke patients. Atherosclerosis. 2013;230(2):210-5. doi: 10.1016/j.atherosclerosis.2013.07.046

61. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Jama-J Am Med Assoc. 1999;282(21):2035-42. doi: 10.1001/jama.282.21.2035

62. Van Agtmaal EL, Bierings R, Dragt BS, et al. The Shear Stress-Induced Transcription Factor KLF2 Affects Dynamics and Angiopoietin-2 Content of Weibel-Palade Bodies. Plos One. 2012;7(6):e38399. doi: 10.1371/journal.pone.0038399

63. Van Thienen JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res. 2006;72(2):231-40. doi: 10.1016/j.cardiores.2006.07.008

64. Scridon A, Girerd N, Rugeri L, et al. Progressive endothelial damage revealed by multilevel von Willebrand factor plasma concentrations in atrial fibrillation patients. Europace. 2013;15(11):1562-6. doi: 10.1093/europace/eut121

65. Conway DSG, Pearce LA, Chin BSP, et al. Plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 1321 patients with nonvalvular atrial fibrillation – Relationship to stroke risk factors. Circulation. 2002;106(15):1962-7. doi: 10.1161/01.CIR.0000033220.97592.9A

66. Cortes GM, Sandoval MEV, Martinez CAA, et al. Von Willebrand Factor plasma levels variability in nonvalvular Atrial Fibrillation. J Atr Fibrillation. 2014;7(4):99-105. doi: 10.4022/jafib.1124

67. Rewiuk K, Grodzicki T. Correlations of C-reactive protein, von Willebrand factor, and carotid artery intima-media thickness with CHA2DS2-VASc in patients with acute atrial fibrillation. Pol Arch Med Wewn. 2015;125(11):835-44. doi: 10.20452/pamw.3162

68. Kraft P, Drechsler C, Gunreben I, et al. Von Willebrand Factor Regulation in Patients with Acute and Chronic Cerebrovascular Disease: A Pilot, Case-Control Study. Plos One. 2014;9(6):e99851. doi: 10.1371/journal.pone.0099851

69. Lynch JR, Blessing R, White WD, et al. Novel diagnostic test for acute stroke. Stroke. 2004;35(1):57-63. doi: 10.1161/01.STR.0000105927.62344.4C

70. Samai A, Monlezun D, Shaban A, et al. Von Willebrand Factor Drives the Association Between Elevated Factor VIII and Poor Outcomes in Patients With Ischemic Stroke. Stroke. 2014;45(9):2789-91. doi: 10.1161/STROKEAHA.114.006394

71. Hanson E, Jood K, Karlsson S, et al. Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke. J Thromb Haemost. 2011;9(2):275-81. doi: 10.1111/j.1538-7836.2010.04134.x

72. Tobin WO, Kinsella JA, Kavanagh GF, et al. Profile of von Willebrand factor antigen and von Willebrand factor propeptide in an overall TIA and ischaemic stroke population and amongst subtypes. J Neurol Sci. 2017;375:404-10. doi: 10.1016/j.jns.2017.02.045

73. Wiseman S, Marlborough F, Doubal F, et al. Blood Markers of Coagulation, Fibrinolysis, Endothelial Dysfunction and Inflammation in Lacunar Stroke versus Non-Lacunar Stroke and Non-Stroke: Systematic Review and Meta-Analysis. Cerebrovasc Dis. 2014;37(1):64-75. doi: 10.1159/000356789

74. De Meyer SF, Stoll G, Wagner DD, Kleinschnitz C. Von Willebrand Factor an Emerging Target in Stroke Therapy. Stroke. 2012;43(2):599-606. doi: 10.1161/STROKEAHA.111.628867

75. McCabe DJH, Murphy SJX, Starke R, et al. Relationship between ADAMTS13 activity, von Willebrand factor antigen levels and platelet function in the early and late phases after TIA or ischaemic stroke. J Neurol Sci. 2015;348 (1-2):35-40. doi: 10.1016/j.jns.2014.10.035

76. Lambers M, Goldenberg NA, Kenet G, et al. Role of Reduced ADAMTS13 in Arterial Ischemic Stroke: A Pediatric Cohort Study. Ann Neurol. 2013;73(1):58-64. doi: 10.1002/ana.23735

77. Stoll M, Ruehle F, Witten A, et al. Rare Variants in the ADAMTS13 Von Willebrand Factor-Binding Domain Contribute to Pediatric Stroke. Circ-Cardiovasc Genet. 2016;9(4):357-67. doi: 10.1161/CIRCGENETICS.115.001184

78. Bath PMW, Blann A, Smith N, Butterworth RJ. Von Willebrand factor, P-selectin and fibrinogen levels in patients with acute ischaemic and haemorrhagic stroke, and their relationship with stroke sub-type and functional outcome. Platelets. 1998;9(3-4):155-9. doi: 10.1080/09537109876618

79. Zhu X, Cao Y, Wei L, et al. Von Willebrand factor contributes to poor outcome in a mouse model of intracerebral haemorrhage. Sci Rep. 2016;6:35901. doi: 10.1038/srep35901

80. Gusev EI, Martynov MYu, Koltsov IA, et al. Prognostic value of endothelial dysfunction and von Willebrand factor in acute and chronic hemispheric intracerebral hemorrhage. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019;119(8-2):46-52. doi: 10.17116/jnevro201911908246 (In Russ.).

81. Boluijt J, Meijers JCM, Rinkel GJE, Vergouwen MDI. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review. J Cereb Blood Flow Metab. 2015;35(5):724-33. doi: 10.1038/jcbfm.2015.13

82. McGirt MJ, Lynch JR, Blessing R, et al. Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;51(5):1128-34. doi: 10.1227/01.NEU.0000031751.23324.38

83. Giovannoni G, Thorpe JW, Kidd D, et al. Soluble E-selectin in multiple sclerosis: raised concentrations in patients with primary progressive disease. J Neurol Neurosurg Psychiatry. 1996;60(1):20-6. doi: 10.1136/jnnp.60.1.20

84. Noubade R, del Rio R, McElvany B, et al. Von-Willebrand factor influences blood brain barrier permeability and brain inflammation in experimental allergic encephalomyelitis. Am J Pathol. 2008;173(3):892-900. doi: 10.2353/ajpath.2008.080001

85. Spirin NN, Spirina NN, Boiko AN. Von Willebrand factor and adhesion molecules in patients with multiple sclerosis. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2014;114(2-2):35-9 (In Russ.).

86. Saenz-Cuesta M, Osorio-Querejeta I, Otaegui D. Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us? Front Cell Neurosci. 2014;8:100. doi: 10.3389/fncel.2014.00100

87. Lu K, Liu L, Xu X, et al. ADAMTS13 ameliorates inflammatory responses in experimental autoimmune encephalomyelitis. J Neuroinflammation. 2020;17(1):67. doi: 10.1186/s12974-020-1713-z

88. Ziliotto N, Bernardi F, Jakimovski D, et al. Hemostasis biomarkers in multiple sclerosis. Eur J Neurol. 2018;25(9):1169-76. doi: 10.1111/ene.13681


For citation:


Koltsov I.A., Martynov M.Yu., Yasamanova A.N., Shchukin I.A., Fidler M.S., Boyko A.N. Influence of von Willebrand factor on common pathophysiological mechanisms of cerebrovascular diseases and multiple sclerosis. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1S):62-68. (In Russ.) https://doi.org/10.14412/2074-2711-2021-1S-62-68

Views: 74


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)