Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Neuroprotective therapy in acute ischemic stroke

Full Text:


The review discusses the role of neuroprotective therapy in the acute period of ischemic stroke in the era of active introduction of reperfusion treatment methods. The main mechanisms of brain damage during ischemia/reperfusion and the leading neuroprotective strategies studied in clinical trials are considered. Neuroprotective approaches aimed at suppressing excitotoxicity, oxidative stress, and neuroinflammation are presented. Current data on the safety and efficacy of uric acid, edaravone, fingolimod, natalizumab, interleukin 1 receptors antagonists, cerebrolysin, and other drugs have been analyzed. Non-drug methods of neuroprotection are characterized, including remote ischemic conditioning, therapeutic hypothermia, and neurostimulation. According to the author's position, the safest and most effective neuroprotective agent in acute ischemic stroke is cerebrolysin.

About the Author

A. A. Kulesh
Department of neurology and medical genetics, Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
Russian Federation

Aleksey Aleksandrovich Kulesh.

26, Petropavlovskaya St., Perm 614990.

Competing Interests:

The conflict of interest has not affected the results of the investigation. 


1. Samorodskaya IV, Andreev EM, Zaratyants OV, et al. Cerebrovascular disease mortality rates in the population over 50 years of age in Russia and the USA over a 15-year period. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(2):15-24. doi: 10.14412/2074-2711-2017-2-15-24 (In Russ.).

2. Thomalla G, Simonsen CZ, Boutitie F, et al. WAKE-UP Investigators. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018 Aug 16;379(7):611-22. doi: 10.1056/NEJMoa1804355. Epub 2018 May 16.

3. Campbell BCV, Ma H, Ringleb PA, et al. Extending thrombolysis to 4,5—9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet. 2019 Jul 13;394(10193):139-47. doi: 10.1016/S0140-6736(19)31053-0. Epub 2019 May 22.

4. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med. 2018 Feb 22;378(8):708-18. doi: 10.1056/NEJMoa1713973. Epub 2018 Jan 24.

5. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018 Jan 4;378(1):11-21. doi: 10.1056/NEJMoa1706442. Epub 2017 Nov 11.

6. Albers GW. Late Window Paradox. Stroke. 2018 Mar;49(3):768-71. doi: 10.1161/STROKEAHA.117.020200. Epub 2018 Jan 24.

7. Kulesh AA, Syromyatnikova LI, Golosova YuA, Shestakov VV. The experience of using thrombolysis in patients with acute disturbances of cerebral circulation: efficacy, safety, predictors of outcome and hemorrhagic transformation. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2018;118(7):18-24. doi: 10.17116/jnevro20181187118 (In Russ.).

8. Lees KR, Emberson J, Blackwell L, et al. Effects of Alteplase for Acute Stroke on the Distribution of Functional Outcomes: A Pooled Analysis of 9 Trials. Stroke. 2016 Sep;47(9):2373-9. doi: 10.1161/STROKEAHA.116.013644. Epub 2016 Aug 9.

9. Kulesh AA, Shestakov VV. Vascular cognitive impairment, no dementia: diagnosis, prognosis, treatment, and prevention. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(3):68-75. doi: 10.14412/2074-2711-2017-3-68-75 (In Russ.).

10. Verbitskaya SV, Parfenov VA, Reshetnikov VA, et al. Post-stroke cognitive impairment (results of a 5-year follow-up). Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(1):37-42. doi: 10.14412/2074-2711-2018-1-37-42 (In Russ.).

11. Rha JH, Saver JL. The impact of recanalization on ischemic stroke outcome: a metaanalysis. Stroke. 2007 Mar;38(3):967-73. doi: 10.1161/01.STR.0000258112.14918.24. Epub 2007 Feb 1.

12. Soares BP, Tong E, Hom J, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010 Jan;41(1):e34-40. doi: 10.1161/STROKEAHA.109.568766. Epub 2009 Nov 12.

13. Chamorro А. Neuroprotectants in the Era of Reperfusion Therapy. Review. J Stroke. 2018 May;20(2):197-207. doi: 10.5853/jos.2017.02901. Epub 2018 May 31.

14. Chamorro А, Blasco J, Lopez A, et al. Complete reperfusion is required for maximal benefits of mechanical thrombectomy in stroke patients. Sci Rep. 2017 Sep 14;7(1):11636. doi: 10.1038/s41598-017-11946-y

15. Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014 Apr 3;508(7494):55-60. doi: 10.1038/nature13165. Epub 2014 Mar 26.

16. Fisher M, Saver JL. Future directions of acute ischaemic stroke therapy. Lancet Neurol. 2015 Jul;14(7):758-67. doi: 10.1016/S1474-4422(15)00054-X

17. Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005 Feb;36(2):189-92. doi: 10.1161/01.STR.0000153069.96296.fd. Epub 2005 Jan 6.

18. O'Collins VE, Macleod MR, Donnan GA, et al. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006 Mar;59(3):467-77. doi: 10.1002/ana.20741

19. Xiong XY, Liu L, Yang QW. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies. Front Neurol. 2018 Apr 23;9:249. doi: 10.3389/fneur.2018.00249. eCollection 2018.

20. Chamorro А, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016 Jul;15(8):869-81. doi: 10.1016/S1474-4422(16)00114-9. Epub 2016 May 11.

21. Savitz SI, Baron JC, Yenari MA, et al. Reconsidering Neuroprotection in the Reperfusion Era. Stroke. 2017 Dec;48(12):3413-9. doi: 10.1161/STROKEA-HA.117.017283. Epub 2017 Nov 16.

22. Manzanero S, Santro T, Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int. 2013 Apr;62(5):712-8. doi: 10.1016/j.neuint.2012.11.009. Epub 2012 Nov 29.

23. Tsai JP, Albers GW. Reperfusion versus recanalization: the winner is. Stroke. 2015 Jun;46(6):1433-4. doi: 10.1161/STROKEAHA.115.009268. Epub 2015 Apr 23.

24. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol. 1986 Feb;19(2):105-11. doi: 10.1002/ana.410190202

25. Saver JL, Starkman S, Eckstein M, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015 Feb 5;372(6):528-36. doi: 10.1056/NEJMoa1408827

26. Fukuyama N, Takizawa S, Ishida H, et al. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J Cereb Blood Flow Metab. 1998 Feb;18(2):123-9. doi: 10.1097/00004647-199802000-00001

27. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007 Jan;87(1):315-424. doi: 10.1152/physrev.00029.2006

28. Shuaib A, Lees KR, Lyden P, et al, for the SAINT II trial Investigators. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007 Aug 9;357(6):562-71. doi: 10.1056/NEJMoa070240

29. Onetti Y, Dantas AP, Perez B, et al. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment. Am J Physiol Heart Circ Physiol. 2015 Apr 15;308(8):H862-74. doi: 10.1152/ajp-heart.00001.2015. Epub 2015 Jan 30.

30. Llull L, Laredo C, Renu A, et al. Uric acid therapy improves clinical outcome in women with acute ischemic stroke. Stroke. 2015 Aug;46(8):2162-7. doi: 10.1161/STROKEAHA.115.009960. Epub 2015 Jul 9.

31. Amaro S, Llull L, Renu A, et al. Uric acid improves glucose-driven oxidative stress in human ischemic stroke. Ann Neurol. 2015 May;77(5):775-83. doi: 10.1002/ana.24378. Epub 2015 Mar 13.

32. Feng S, Yang Q, Liu M, et al. Edaravone for acute ischemic stroke. Cochrane Database Syst Rev. 2011 Dec 7;(12):CD007230. doi: 10.1002/14651858.CD007230.pub2

33. Miyaji Y, Yoshimura S, Sakai N, et al. Effect of edaravone on favorable outcome in patients with acute cerebral large vessel occlusion: subanalysis of RESCUE — Japan Registry. Neurol Med Chir (Tokyo). 2015;55(3):241-7. doi: 10.2176/nmc.ra.2014-0219. Epub 2015 Feb 20.

34. Enomoto M, Endo A, Yatsushige H, et al. Clinical Effects of Early Edaravone Use in Acute Ischemic Stroke Patients Treated by Endovascular Reperfusion Therapy. Stroke. 2019 Mar;50(3):652-8. doi: 10.1161/STROKEAHA.118.023815

35. Kobayashi S, Fukuma S, Ikenoue T, et al. Effect of Edaravone on Neurological Symptoms in Real-World Patients With Acute Ischemic Stroke. Stroke. 2019 Jul;50(7):1805-11. doi: 10.1161/STROKEAHA.118.024351. Epub 2019 Jun 5.

36. Chamorro А, Meisel A, Planas AM, et al. The immunology of acute stroke. Nat Rev Neurol. 2012 Jun 5;8(7):401-10. doi: 10.1038/nrneurol.2012.98

37. Drieu A, Levard D, Vivien D, Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Review. Ther Adv Neurol Disord. 2018 Jul 30;11:1756286418789854. doi: 10.1177/1756286418789854. eCollection 2018.

38. Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011 Dec 10;8:174. doi: 10.1186/1742-2094-8-174

39. Ramiro L, Simats A, Garcia-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord. 2018 Aug 6;11:1756286418789340. doi: 10.1177/1756286418789340. eCollection 2018.

40. Sergeeva SP, Savin AA, Breslavich ID, et al. The level of interleukin-6 in acute ischemic stroke: effect on the rate of recovery in patients and on the severity of neurological defect. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(3):29-35. doi: 10.14412/2074-27112018-3-29-35 (In Russ.).

41. Kulesh AA, Kuklina YeM, Shestakov VV. The relationship between serum and liquor IL-1p, IL-6, TNFA, IL-10 levels and clinical, cognitive and functional characteristics in acute ischemic stroke. Klinicheskaya meditsina. 2016;94(9):657-62 (In Russ.).

42. Kulesh AA, Drobakha VE, Shestakov VV, et al. Neuroinflammatory, neurodegenerative and structural cerebral markers of the main clinical variants of post-stroke cognitive impairment in the acute period of ischemic stroke. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2016;71(4):304-12 (In Russ.).

43. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013 Dec 15;25(6):469-84. doi: 10.1016/j.smim.2013.10.008. Epub 2013 Nov 23.

44. Banwell V, Sena ES, Macleod MR. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J Stroke Cerebrovasc Dis. Jul-Aug 2009;18(4):269-76. doi: 10.1016/j.jstrokecerebrovasdis.2008.11.009

45. Emsley HCA, Smith CJ, Georgiou RF, et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry. 2005 Oct;76(10):1366-72. doi: 10.1136/jnnp.2004.054882

46. Smith CJ, Hulme S, Vail A, et al. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial. Stroke. 2018 May;49(5):1210-6. doi: 10.1161/STROKEAHA.118.020750. Epub 2018 Mar 22.

47. Liu X, Liu J, Zhao S, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 2016 Feb;47(2):498-504. doi: 10.1161/STROKEAHA.115.012079. Epub 2016 Jan 5.

48. Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol. 2019 May;137(5):693-714. doi: 10.1007/s00401-018-1930-z. Epub 2018 Nov 27.

49. Switzer JA, Hess DC, Ergul A, et al. Matrix metalloproteinase-9 in an exploratory trial of intravenous. Stroke. 2011 Sep;42(9):2633-5. doi: 10.1161/STROKEAHA.111.618215. Epub 2011 Jul 7.

50. Lampl Y, Boaz M, Gilad R, et al. Minocycline treatment in acute stroke: An open-label, evaluator-blinded study. Neurology. 2007 Oct 2;69(14):1404-10. doi: 10.1212/01.wnl.0000277487.04281.db

51. Kohler E, Prentice DA, Bates TR, et al. Intravenous minocycline in acute stroke: a randomized, controlled pilot study and metaanalysis. Stroke. 2013 Sep;44(9):2493-9. doi: 10.1161/STROKEAHA.113.000780. Epub 2013 Jul 18.

52. Padma Srivastava MV, Bhasin A, Bhatia R, et al. Efficacy of minocycline in acute ischemic stroke: A single-blinded, placebo-controlled trial. Neurol India. 2012 Jan-Feb;60(1):23-8. doi: 10.4103/0028-3886.93584

53. Sheng Z, Liu Y, Li H, et al. Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. Front Neurol. 2018 Dec 20;9:1103. doi: 10.3389/fneur.2018.01103. eCollection 2018.

54. Liu J, Zhang C, Tao W, Liu M. Systematic review and meta-analysis of the efficacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 (fingolimod) in animal models of stroke. Int J Neurosci. 2013 Mar;123(3):163-9. doi: 10.3109/00207454.2012.749255. Epub 2012 Dec 21.

55. Zhu Z, Fu Y, Tian D, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015 Sep 22;132(12):1104-12. doi: 10.1161/CIRCULATIONAHA.115.016371. Epub 2015 Jul 22.

56. Tian DC, Shi K, Zhu Z, et al. Fingolimod enhances the efficacy of delayed alteplase administration in acute ischemic stroke by promoting anterograde reperfusion and retrograde collateral flow. Ann Neurol. 2018 Nov;84(5):717-28. doi: 10.1002/ana.25352. Epub 2018 Nov 2.

57. Zhang S, Zhou Y, Zhang R, et al. Rationale and design of combination of an immune modulator Fingolimod with Alteplase bridging with Mechanical Thrombectomy in Acute Ischemic Stroke (FAMTAIS) trial. Int J Stroke. 2017 Oct;12(8):906-9. doi: 10.1177/1747493017710340. Epub 2017 Jun 1.

58. Elkins J, Veltkamp R, Montaner J, et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, doubleblind phase 2 trial. Lancet Neurol. 2017 Mar;16(3):217-26. doi: 10.1016/S1474-4422(16)30357-X. Epub 2017 Feb 15.

59. Ejaz S, Emmrich JV, Sitnikov SL, et al. Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia. Brain. 2016 Mar;139(Pt 3):751-64. doi: 10.1093/brain/awv391. Epub 2016 Jan 14.

60. Padma MV, Bhasin A, Bhatia R, et al. Normobaric oxygen therapy in acute ischemic stroke: a pilot study in Indian patients. Ann Indian Acad Neurol. 2010 Oct;13(4):284-8. doi: 10.4103/0972-2327.74203

61. Singhal AB, Benner T, Roccatagliata L, et al. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005 Apr;36(4):797-802. doi: 10.1161/01.STR.0000158914.66827.2e. Epub 2005 Mar 10.

62. Landman TRJ, Schoon Y, Warle MC, et al. Remote Ischemic Conditioning as an Additional Treatment for Acute Ischemic Stroke. Stroke. 2019 Jul;50(7):1934-9. doi: 10.1161/STROKEAHA.119.025494. Epub 2019 Jun 3.

63. Hess DC, Blauenfeldt RA, Andersen G, et al. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015 Dec;11(12):698-710. doi: 10.1038/nrneurol.2015.223. Epub 2015 Nov 20.

64. Hougaard KD, Hjort N, Zeidler D, et al. Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke. 2014 Jan;45(1):159-67. doi: 10.1161/STROKEAHA.113.001346. Epub 2013 Nov 7.

65. England TJ, Hedstrom A, O'Sullivan S, et al. RECAST (Remote Ischemic Conditioning After Stroke Trial): a pilot randomized placebo controlled phase II trial in acute ischemic stroke. Stroke. 2017 May;48(5):1412-5. doi: 10.1161/STROKEAHA.116.016429. Epub 2017 Mar 6.

66. Meng R, Asmaro K, Meng L, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012 Oct 30;79(18):1853-61. doi: 10.1212/WNL.0b013e318271f76a. Epub 2012 Oct 3.

67. Meng R, Ding Y, Asmaro K, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics. 2015 Jul;12(3):667-77. doi: 10.1007/s13311-015-0358-6

68. Kulesh AA, Drobakha VE, Shestakov VV. Cerebral small vessel disease: classification, clinical manifestations, diagnosis, and features of treatment. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(Suppl. 3):4-17. doi: 10.14412/2074-2711-2019-3S-4-17 (In Russ.).

69. Mi T, Yu F, Ji X, et al. The interventional effect of remote ischemic preconditioning on cerebral small vessel disease: a pilot randomized clinical trial. Eur Neurol. 2016;76(1-2):28-34. doi: 10.1159/000447536. Epub 2016 Jun 29.

70. Wang Y, Meng R, Song H, et al. Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke. 2017 Nov;48(11):3064-72. doi: 10.1161/STROKEAHA.117.017691. Epub 2017 Oct 17.

71. Zhao W, Zhang J, Sadowsky M, et al. Remote Ischemic Conditioning for Preventing and Treating Ischemic Stroke. Stroke. 2018 Jul 5;7(7):CD012503. doi: 10.1002/14651858.CD012503.pub2

72. Pico F, Rosso C, Meseguer E, et al. A multicenter, randomized trial on neuroprotection with remote ischemic per-conditioning during acute ischemic stroke: the REmote iSchemic Conditioning in acUtE BRAin INfarction study protocol. Int J Stroke. 2016 Oct;11(8):938-43. doi: 10.1177/1747493016660098. Epub 2016 Jul 19.

73. Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Review. Neuropharmacology. 2018 May 15;134(Pt B):302-9. doi: 10.1016/j.neuropharm.2017.08.025. Epub 2017 Aug 19.

74. Lyden PD, Allgren RL, Ng K, et al. Intravascular Cooling in the Treatment of Stroke (ICTuS): early clinical experience. J Stroke Cerebrovasc Dis. May-Jun 2005;14(3):107-14. doi: 10.1016/j.jstrokecere-brovasdis.2005.01.001

75. Hemmen TM, Raman R, Guluma KZ, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final result Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Stroke. 2010 Oct;41(10):2265-70. doi: 10.1161/STROKEAHA.110.592295. Epub 2010 Aug 19.

76. Bornstein NM, Saver JL, Diener HC, et al. Sphenopalatine Ganglion Stimulation to Augment Cerebral Blood Flow. Stroke. 2019 Aug;50(8):2108-17. doi: 10.1161/STROKEAHA.118.024582. Epub 2019 May 23.

77. Bornstein NM, Saver JL, Diener HC, et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT 24B): an international, randomised, double-blind, sham controlled, pivotal trial. Lancet. 2019 Jul 20;394(10194):219-29. doi: 10.1016/S0140-6736(19)31192-4. Epub 2019 May 24.

78. Brainin M. Cerebrolysin: a multi-target drug for recovery after stroke. Expert Rev Neurother. 2018 Aug;18(8):681-7. doi: 10.1080/14737175.2018.1500459. Epub 2018 Jul 18.

79. Gromova EA, Pronin AV, Torshin IYu, et al. Neurotrophic and antioxidant potential of neuropeptides and trace elements. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2015;7(4):92-100. doi: 10.14412/2074-27112015-4-92-100 (In Russ.).

80. Chukanova EI, Chukanova AS. Chronic cerebral ischemia, neuroplasticity, possibilities of therapy. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9 (2):102-7. doi: 10.14412/2074-2711-2017-2-102-107 (In Russ.).

81. Ren J, Sietsma D, Qiu S, et al. Cerebrolysin enhances functional recovery following focal cerebral infarction in rats. Restor Neurol Neurosci. 2007;25(1):25-31.

82. Hanson LR, Liu XF, Ross TM, et al. Cerebrolysin reduces infarct volume in a rat model of focal cerebral ischemic damage. Am J Neuroprotect Neuroregen. 2009;1:60-6.

83. Heiss WD, Brainin M, Bornstein NM, et al. Cerebrolysin Acute Stroke Treatment in Asia (CASTA) Investigators. Cerebrolysin in patients with acute ischemic stroke in Asia: results of a double-blind, placebo-controlled randomized trial. Stroke. 2012 Mar;43(3):630-6. doi: 10.1161/STROKEAHA.111.628537. Epub 2012 Jan 26.

84. Muresanu DF, Heiss WD, Hoemberg V, et al. Cerebrolysin and Recovery after Stroke (CARS): A Randomized, Placebo-Controlled, Double-Blind, Multicenter Trial. Stroke. 2016 Jan;47(1):151-9. doi: 10.1161/STROKEA-HA.115.009416. Epub 2015 Nov 12.

85. Kustova MA, Tolmachev AP, Shamalov NA. Effect of cerebrolysin on motor function restoration during medical rehabilitation. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2016;8(2):80-6. doi: 10.14412/2074-2711-20162-80-86 (In Russ.).

86. Guekht A, Vester J, Heiss WD, et al. Safety and efficacy of Cerebrolysin in motor function recovery after stroke: a meta-analysis of the CARS trials. Neurol Sci. 2017 Oct;38(10):1761-9. doi: 10.1007/s10072-017-3037-z. Epub 2017 Jul 13.

87. Lang W, Stadler CH, Poljakovic Z, Fleet D; Lyse Study Group. A prospective, randomized, placebo-controlled, double-blind trial about safety and efficacy of combined treatment with alteplase (rtPA) and Cerebrolysin in acute ischaemic hemispheric stroke. Int J Stroke. 2013 Feb;8(2):95-104. doi: 10.1111/j.1747-4949.2012.00901.x. Epub 2012 Sep 26.

88. Bornstein NM, Guekht A, Vester J, et al. Safety and efficacy of Cerebrolysin in early post-stroke recovery: a meta-analysis of nine randomized clinical trials. Neurol Sci. 2018 Apr;39(4):629-40. doi: 10.1007/s10072-017-3214-0. Epub 2017 Dec 16.


For citations:

Kulesh A.A. Neuroprotective therapy in acute ischemic stroke. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(4):94-102. (In Russ.)

Views: 277

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)