Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Post-covid syndrome: a review of pathophysiology, neuropsychiatric manifestations and treatment perspectives

https://doi.org/10.14412/2074-2711-2021-3-93-98

Full Text:

Abstract

In the context of the COVID-19 pandemic, healthcare is faced with several new problems, one of which is a post-covid syndrome. Symptoms in many COVID-19 survivors can persist for a long time, significantly affecting the quality of life and work performance. All of the above makes post-covid syndrome a socially significant disease, requires dynamic follow-up of such patients, and rehabilitation programs development. We are currently at the stage of accumulating knowledge about the SARS-CoV-2 pathophysiology and morphogenesis and its long-term consequences. This article discusses neuropsychiatric aspects of the post-covid syndrome: pathogenetic hypotheses, clinical features, and potentially promising treatment strategies.

About the Authors

D. R. Khasanova
Kazan State Medical University, Ministry of Health of Russia; Interregional Clinical Diagnostic Center, Ministry of Healthof the Republic of Tatarstan
Russian Federation

49, Butlerov St., Kazan 420012,

12a, Karbyshev St., Kazan 420101



Yu. V. Zhitkova
Interregional Clinical Diagnostic Center, Ministry of Healthof the Republic of Tatarstan
Russian Federation

Yulia Vladimirovna Zhitkova

12a, Karbyshev St., Kazan 420101



G. R. Vaskaeva
Kazan State Medical University, Ministry of Health of Russia
Russian Federation

49, Butlerov St., Kazan 420012



References

1. Carfi A, Bernabei R, Landi F, et al. Persistent Symptoms in Patients after Acute COVID-19. JAMA. 2020 Aug 11;324(6):603-5. doi: 10.1001/jama.2020.12603

2. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March–June 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 31;69(30):993-8. doi: 10.15585/mmwr.mm6930e1

3. Van den Borst B, Peters JB, Brink M, et al. Comprehensive health assessment three months after recovery from acute COVID-19. Clin Infect Dis. 2020 Nov 21;ciaa1750. doi: 10.1093/cid/ciaa1750. Online ahead of print.

4. Kumari P, Rothan HA, Natekar JP, et al. Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18- hACE2 Mice. Viruses. 2021 Jan 19;13(1):132. doi: 10.3390/v13010132

5. Alekseyeva NT, Sokolov DA, Nikityuk DB, et al. Molecular and cellular mechanisms of damage to the central nervous system in COVID-19. Zhurnal anatomii i gistopatologii. 2020;9(3):72-85 (In Russ.).

6. Futtrup J, Margolinsky R, Benros ME, et al. Blood-brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in casecontrol studies. Brain Behav Immun Health. 2020 Nov;90:364-80. doi: 10.1016/j.bbi.2020.08.028. Epub 2020 Sep 3.

7. Wang Z, Yang Y, Liang X. COVID-19 Associated Ischemic Stroke and Hemorrhagic Stroke: Incidence, Potential Pathological Mechanism, and Management. Front Neurol. 2020 Oct 27;11:571996. doi: 10.3389/fneur.2020.571996. eCollection 2020.

8. Lu Y, Li X, Geng D, et al. Cerebral MicroStructural Changes in COVID-19 Patients An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020 Aug;25:100484. doi: 10.1016/j.eclinm.2020.100484. Epub 2020 Aug 3.

9. Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimer's Res Ther. 2020 Dec 30;12(1):170. doi: 10.1186/s13195-020-00744-w

10. Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021 Feb;27(2):258-63. doi: 10.1016/j.cmi.2020.09.052. Epub 2020 Oct 5.

11. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and healthrelated quality of life after hospitalization for COVID-19. J Infect. 2020 Dec;81(6):e4-e6. doi: 10.1016/j.jinf.2020.08.029. Epub 2020 Aug 25.

12. Beaud V, Crottaz-Herbette S, Dunet V, et al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry. 2021 May;92(5):567-8. doi: 10.1136/jnnp-2020-325173. Epub 2020 Nov 20.

13. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020 Jul;7(7):611-27. doi: 10.1016/S2215-0366(20)30203-0. Epub 2020 May 18.

14. Almeria M, Cejudo JC, Sotoca J, et al. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, Behav Immun Health. 2020 Dec;9:100163. doi: 10.1016/j.bbih.2020.100163. Epub 2020 Oct 22.

15. Naughton SX, Raval U, Pasinetti GM. Potential Novel Role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. J Alzheimers Dis. 2020;76(1):21- 5. doi: 10.3233/JAD-200537

16. Pinna P, Grewal P, Hall JP, et al. Neurological manifestations and COVID-19: experiences from a tertiary care center at the frontline. J Neurol Sci. 2020 Aug 15;415:116969. doi: 10.1016/j.jns.2020.116969. Epub 2020 Jun 3.

17. Magoon R. Pulmonary vasculature in COVID-19: mechanism to monitoring! Korean J Anesthesiol. 2021 Apr;74(2):186-7. doi: 10.4097/kja.20536. Epub 2020 Oct 5.

18. Love S, Chalmers K, Ince P, et al. Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue. Am J Neurodegener Dis. 2014 Mar 28;3(1):19-32. eCollection 2014.

19. Kehoe PG, Wong S, Mulhim NAL, et al. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-beta and tau pathology. Alzheimers Res Ther. 2016 Nov 25;8(1):50. doi: 10.1186/s13195-016-0217-7

20. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020 Oct 15;75(11):2231-2. doi: 10.1093/gerona/glaa131

21. Taquet M, Luciano S, Geddes JR, et al. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2021 Feb;8(2):130-40. doi: 10.1016/S2215-0366(20)30462-4. Epub 2020 Nov 9.

22. Woo MS, Malsy J, Pöttgen J, et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020 Nov 23;2(2):fcaa205. doi: 10.1093/braincomms/fcaa205. eCollection 2020.

23. Lee Y, Subramaniapillai M, Brietzke E, et al. Anti-cytokine agents for anhedonia: targeting inflammation and the immune system to treat dimensional disturbances in depression. Ther Adv Psychopharmacol. 2018 Nov 19;8(12):337-48. doi: 10.1177/2045125318791944. eCollection 2018 Dec.

24. Alpert O, Begun L, Garren P, et al., Cytokine storm induced new onset depression in patients with COVID-19. A new look into the association between depression and cytokines – two case reports. Brain Behav Immun Health. 2020 Dec;9:100173. doi: 10.1016/j.bbih.2020.100173. Epub 2020 Nov 3.

25. De Erausquin GA, Snyder H, Carrillo M, et al. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimer’s Dement. 2021 Jan 5. doi: 10.1002/alz.12255. Online ahead of print.

26. Shi J, Gao Y, Zhao L, et al. Prevalence of delirium, depression, anxiety, and post-traumatic stress disorder among COVID-19 patients: protocol for a living systematic review. Syst Rev. 2020 Nov 6;9(1):258. doi: 10.1186/s13643-020-01507-2

27. Barker-Davies RM, O’Sullivan O, Senaratneet KPP, et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med. 2020 Aug;54(16):949- 59. doi: 10.1136/bjsports-2020-102596. Epub 2020 May 31.

28. Demeco A, Marotta N, Barletta M, et al. Rehabilitation of patients post-COVID-19 infection: a literature review. J Intern Med Res. 2020 Aug;48(8):300060520948382. doi: 10.1177/0300060520948382

29. Deigner HP, Haberkorn U, Kinscherf R. Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opin Investig Drugs. 2000 Apr;9(4):747-64. doi: 10.1517/13543784.9.4.747

30. Alvarez XA, Lombardi VR, Fernandez-Novoa L, et al. Cerebrolysin reduces microglial activation in vivo and in vitro: a potential mechanism of neuroprotection. J Neural Transm Suppl. 2000;59:281-92. doi: 10.1007/978-3-7091-6781-6-30

31. Domzal T, Zaleska B. Cerebrolysin in treatment of acute ischemic stroke. Neurol Neurochir Pol. May-Jun 1995;29(3):325-31.

32. Schwab M, Antonow-Schlorke I, Zwiener U, et al. Brain-derived peptides reduce the size of cerebral infarction and loss of MAP2 immunoreactivity after focal ischemia in rats. J Neural Transm Suppl. 1998;53:299-311. doi: 10.1007/978-3-7091-6467-9-26

33. Babenkova IV, Teselkin OYu, Makashova NV, Guseva MR. Antioxidative activity of histochrome and some other drugs used in ophthalmology. Vestnik oftalmologii. 1999;115:22-4 (In Russ.).

34. Cruz R, Francis L, Diaz-Suarez CM, et al. Short-term effects of septohippocampal pathway transsection and cerebrolysin effects on glutathione-related enzymes in the rat brain. Rev Neurol. 1998 Apr;26(152):551-4.

35. Tatebayashi Y, Lee MH, Li L, et al. The dentate gyrus neurogenesis: a therapeutic target for Alzheimefs disease. Acta Neuropathol. 2003 Mar;105(3):225-32. doi: 10.1007/s00401-002-0636-3. Epub 2002 Nov 19.

36. Chang WH, Park CH, Kim DY, et al. Cerebrolysin combined with rehabilitation promotes motor recovery in patients with severe motor impairment after stroke. BMC Neurol. 2016 Mar 2;16:31. doi: 10.1186/s12883-016-0553-z

37. Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 2020 May;581(7806):71-6. doi: 10.1038/s41586-020-2247-3. Epub 2020 Apr 29.

38. Muresanu DF, Heiss W-D, Hoemberg V, et al. Cerebrolysin and Recovery After Stroke (CARS). A randomized, placebo-controlled, double-blind, multicenter trial. Stroke. 2016 Jan;47(1):151-9. doi: 10.1161/STROKEAHA.115.009416. Epub 2015 Nov 12.

39. Guekht A, Moessler H, Novak PH, Gusev EI; Cerebrolysin Investigators. Cerebrolysin in vascular dementia: Improvement of clinical outcome in a randomized, double blind, placebo-controlled multicenter trial. J Stroke Cerebrovasc Dis. Jul-Aug 2011;20(4):310-8. doi: 10.1016/j.jstrokecerebrovasdis.2010.01.012. Epub 2010 Jul 24.


Review

For citations:


Khasanova D.R., Zhitkova Yu.V., Vaskaeva G.R. Post-covid syndrome: a review of pathophysiology, neuropsychiatric manifestations and treatment perspectives. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(3):93-98. https://doi.org/10.14412/2074-2711-2021-3-93-98

Views: 911


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)