Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Chemoreactom analysis of cytidyldiphosphocholine indicates synergistic combinations of neuroprotective agents

https://doi.org/10.14412/2074-2711-2021-2-144-156

Abstract

 Objective: to establish the molecular mechanisms of interaction of cytidine-diphosphocholine choline (CDP-choline) with other agents used to treat chronic cerebral ischemia (CCI) to increase the effectiveness of the therapy..

Material and methods. A chemoreactom analysis of CDP-choline, betahistine, ethyl-methyl-hydroxypyridine succinate  (EMHPS), vinpocetine, and nicergoline was conducted using the  computational methods of the theory of topological analysis of  chemographs. 

 Results and discussion. The profiles of the pharmacological action of molecules are described, including the accumulation in tissues, pharmacokinetic and pharmacodynamic parameters, the effect on the metabolome and proteome, the survival of neurons during glutamate stress. The mechanisms of the synergistic action of CDP-choline and EMHPS were discovered,  including: 1) inhibition of the activation of the pro-inflammatory  factor NF-κB; 2) decrease in the procoagulant  profile; 3) decrease in glutamate excitotoxicity secondary to  improved oxygen metabolism. These effects result in  conjunction with at least 25 proteins of the human proteome.

Conclusion. CDP-choline supports cholinergic  neurotransmission and is used in the treatment of vascular  pathologies of the brain. The cholinergic effect of CDP-choline  is enhanced by the anti-inflammatory, anticoagulant, and  neuroprotective action of both the molecule itself and  synergistic molecules (in particular, EMHPS). 

About the Authors

I. Yu. Torshin
Federal Research Center «Informatics and Management», Russian Academy of Sciences; Center for Big Data Storage and Analysis, National Center for Digital Economy, M.V. Lomonosov Moscow State University
Russian Federation

 44, Vavilov St., Build. 2, Moscow 119333, Russia 

27, Lomonosovsky Prospect, Build. 1, Moscow 117997, Russia 



O. A. Gromova
Federal Research Center «Informatics and Management», Russian Academy of Sciences; Center for Big Data Storage and Analysis, National Center for Digital Economy, M.V. Lomonosov Moscow State University
Russian Federation

 44, Vavilov St., Build. 2, Moscow 119333, Russia 

27, Lomonosovsky Prospect, Build. 1, Moscow 117997, Russia



L. A. Mayorova
Ivanovo State University of Chemistry and Technology
Russian Federation

 7, Sheremetevsky Passage, Ivanovo 153000, Russia 



T. R. Grishina
Ivanovo State Medical Academy, Ministry of Health of Russia
Russian Federation

 8, Sheremetevsky Passage, Ivanovo 153300, Russia 



L. E. Fedotova
Ivanovo State Medical Academy, Ministry of Health of Russia
Russian Federation

 8, Sheremetevsky Passage, Ivanovo 153300, Russia 



A. N. Gromov
Federal Research Center «Informatics and Management», Russian Academy of Sciences
Russian Federation

 44, Vavilov St., Build. 2, Moscow 119333, Russia 



I. S. Sardaryan
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

 2, Litovskaya St., Saint Petersburg 194100, Russia 



References

1. Parfenov VA. Improving the management of patients with a diagnosis of chronic cerebral ischemia. Meditsinskiy Sovet = Medical Council. 2020;(8):11-7. doi: 10.21518/2079-701X-2020-8-11-17 (In Russ.).

2. Choueiry J, Blais CM, Shah D, et al. Combining CDP-choline and galantamine, an optimized α7 nicotinic strategy, to ameliorate sensory gating to speech stimuli in schizophrenia. Int J Psychophysiol. 2019 Nov;145:70-82. doi: 10.1016/j.ijpsycho.2019.02.005. Epub 2019 Feb 18.

3. Torshin IYu, Gromova OA, Stakhovskaya LV, et al. Chemotranscriptome analysis indicates the neurotrophic and neuromodulator effects of a citicoline molecule. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020;12(4):91-9. doi: 10.14412/2074-2711-2020-4-91-99 (In Russ.).

4. Gromova OA, Torshin IYu, Putilina MV, et al. Choice of neuroprotective therapy regimens in patients with chronic cerebral ischemia, taking into account the synergy of drug interactions. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2020;120(8):42-50. doi: 10.17116/jnevro202012008142 (In Russ.).

5. Dickenson A. Drugs in Neurology. Oxford University Press; 2017. P. 408-9. ISBN 978-0-19-966436-8.

6. Torshin IYu, Gromova OA, Sardaryan IS, Fedotova LE. A comparative chemoreactome analysis of mexidol. Zhurnal Nevrologii i psikhiatrii im. S.S. Korsakova. 2017;117(1-2):75-83 (In Russ.).

7. Zajdel P, Bednarski M, Sapa J, Nowak G. Ergotamine and nicergoline – facts and myths. Pharmacol Rep. 2015 Apr;67(2):360-3. doi: 10.1016/j.pharep.2014.10.010. Epub 2014 Oct 30.

8. Cohen PA. Vinpocetine: An Unapproved Drug Sold as a Dietary Supplement. Mayo Clin Proc. 2015 Oct;90(10):1455. doi: 10.1016/j.mayocp.2015.07.008

9. Torshin IY. The study of the solvability of the genome annotation problem on sets of elementary motifs. Patt Rec Image Analysis. 2011;21(4):652-62.

10. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Patt Rec Image Analysis. 2014;24(1):11-23.

11. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Patt Rec Image Analysis. 2014;24(2):196-208.

12. Wishart DS, Tzur D, Knox C, Eisner R. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6. doi: 10.1093/nar/gkl923

13. Mering C, Jensen L, Snel B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D433-7. doi: 10.1093/nar/gki005

14. Torshin IYu, Rudakov KV. On the Procedures of Generation of Numerical Features over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Patt Rec Image Analysis. 2019;29(4):654-67. doi: 10.1134/S1054661819040175

15. Torshin IYu (ed. Gromova OA). Sensing the change from molecular genetics to personalized medicine. NY, USA: Nova Biomedical Books; 2009, In «Bioinformatics in the Post-Genomic Era» series, ISBN 1-60692-217-0.

16. Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer. 2009 Dec 15;125(12):2863-70. doi: 10.1002/ijc.24748

17. Shimada T, Watanabe J, Kawajiri K, et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis. 1999 Aug;20(8):1607-13. doi: 10.1093/carcin/20.8.1607

18. Bernardini G, Hedrick J, Sozzani S, et al. Identification of the CC chemokines TARC and macrophage inflammatory protein-1 beta as novel functional ligands for the CCR8 receptor. Eur J Immunol. 1998 Feb;28(2):582-8. doi: 10.1002/(SICI)1521-4141(199802)28:02<582::AIDIMMU582>3.0.CO;2-A

19. Costet P, Lalanne F, Gerbod-Giannone MC, et al. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol Cell Biol. 2003 Nov;23(21):7756-66. doi: 10.1128/mcb.23.21.7756-7766.2003

20. Stapels M, Piper C, Yang T, et al. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal. 2010 Mar 2;3(111):ra15. doi: 10.1126/scisignal.2000502

21. Liu DZ, Sharp FR, Van KC, et al. Inhibition of SRC family kinases protects hippocampal neurons and improves cognitive function after traumatic brain injury. J Neurotrauma. 2014 Jul 15;31(14):1268-76. doi: 10.1089/neu.2013.3250

22. Dai JM, Wang ZY, Sun DC, et al. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol. 2007 Jan;210(1):161-6. doi: 10.1002/jcp.20831


Review

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)