Preview

Неврология, нейропсихиатрия, психосоматика

Расширенный поиск

Когнитивные нарушения при COVID-19: взаимосвязь, патогенез и вопросы терапии

https://doi.org/10.14412/2074-2711-2021-2-123-129

Аннотация

 Когнитивные нарушения (КН) могут быть неврологическими симптомами или осложнениями коронавирусной болезни 2019 (COVID-19). Среди патогенетических механизмов рассматриваются нейротропность вируса SARS-CoV-2, эндотелиальная дисфункция, коагулопатия,  тромбообразование, системная воспалительная реакция, последствия  искусственной вентиляции легких и медикаментозной седации. Стратегии лечения пациентов, перенесших COVID-19 и имеющих КН, еще не  разработаны. Целесообразна следующая тактика ведения пациентов:  предупреждение повторного заражения, оценка и коррекция  эмоционального состояния, лечение сердечно-сосудистых заболеваний.  Обсуждаются возможности винпоцетина в лечении КН после COVID-19.  

Об авторах

В. А. Головачева
Университетская клиническая больница №3 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

 Россия, 119991, Москва, ул. Трубецкая, 8, стр. 2 



Г. Р. Табеева
Университетская клиническая больница №3 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

 Россия, 119991, Москва, ул. Трубецкая, 8, стр. 2 



И. В. Кузнецов
Университетская клиническая больница №3 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

 Россия, 119991, Москва, ул. Трубецкая, 8, стр. 2 



Список литературы

1. Alonso-Lana S, Marquie M, Ruiz A, Boada M. Cognitive and Neuropsychiatric Manifestations of COVID-19 and Effects on Elderly Individuals With Dementia. Front Aging Neurosci. 2020 Oct 26;12:588872. doi: 10.3389/fnagi.2020.588872

2. World Health Organization (2020). Coronavirus Disease (COVID-19) Situation Report-190. Available from: https://www.who.int/docs/default- source/coronaviruse/situation- reports/20200928-weekly-epi-update.pdf?sfvrsn= 9e354665_6 (accessed Sep 28, 2020).

3. Boutoleau-Bretonniere C, Pouclet-Courtemanche H, Gillet A, et al. The Effects of Confinement on Neuropsychiatric Symptoms in Alzheimer's Disease During the COVID-19 Crisis. J Alzheimers Dis. 2020;76(1):41-7. doi: 10.3233/JAD-200604

4. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239-42. doi: 10.1001/jama.2020.2648

5. Tsai ST, Lu MK, San S, Tsai CH. The Neurologic Manifestations of Coronavirus Disease 2019 Pandemic: A Systemic Review. Front Neurol. 2020 May 19;11:498. doi: 10.3389/fneur.2020.00498

6. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020 Sep;19(9):767-83. doi: 10.1016/S1474-4422(20)30221-0

7. Pinzon RT, Wijaya VO, Buana RB, et al. Neurologic Characteristics in Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. Front Neurol. 2020 May 29;11:565. doi: 10.3389/fneur.2020.00565

8. Martin-Sanchez FJ, Del Toro E, Cardassay E, et al. Clinical presentation and outcome across age categories among patients with COVID-19 admitted to a Spanish Emergency Department. Eur Geriatr Med. 2020 Oct;11(5):829-41. doi: 10.1007/s41999-020-00359-2. Epub 2020 Jul 16.

9. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using Open SAFELY. Nature. 2020 Aug;584(7821):430-6. doi: 10.1038/s41586-020-2521-4. Epub 2020 Jul 8.

10. Lam MH, Wing YK, Yu MW, et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med. 2009 Dec 14;169(22):2142-7. doi: 10.1001/archinternmed.2009.384

11. Dinakaran D, Manjunatha N, Naveen Kumar C, Suresh BM. Neuropsychiatric aspects of COVID-19 pandemic: A selective

12. review. Asian J Psychiatr. 2020 Oct;53:102188. doi: 10.1016/j.ajp.2020.102188

13. Barberger-Gateau P, Fabrigoule C. Disability and cognitive impairment in the elderly. Disabil Rehabil. 1997 May;19(5):175-93. doi: 10.3109/09638289709166525

14. Batty GD, Deary IJ, Luciano M, et al. Psychosocial factors and hospitalisations for COVID-19: Prospective cohort study based on a community sample. Brain Behav Immun. 2020 Oct;89:569-78. doi: 10.1016/j.bbi.2020.06.021

15. Bianchetti A, Rozzini R, Guerini F, et al. Clinical Presentation of COVID19 in Dementia Patients. J Nutr Health Aging. 2020;24(6):560-2. doi: 10.1007/s12603-020-1389-1

16. Isaia G, Marinello R, Tibaldi V, et al. Atypical Presentation of Covid-19 in an Older Adult With Severe Alzheimer Disease. Am J Geriatr Psychiatry. 2020 Jul;28(7):790-1. doi: 10.1016/j.jagp.2020.04.018

17. Ward CF, Figiel GS, McDonald WM. Altered Mental Status as a Novel Initial Clinical Presentation for COVID-19 Infection in the Elderly. Am J Geriatr Psychiatry. 2020 Aug;28(8):808-11. doi: 10.1016/j.jagp.2020.05.013

18. Парфенов ВА. Дисциркуляторная энцефалопатия и сосудистые когнитивные расстройства. Москва: ИМА-ПРЕСС; 2017. 128 с.

19. Pinna P, Grewal P, Hall JP, et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J Neurol Sci. 2020 Aug 15;415:116969. doi: 10.1016/j.jns.2020.116969. Epub 2020 Jun 3.

20. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 Jun 1;77(6):683-90. doi: 10.1001/jamaneurol.2020.1127

21. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019 Nov 12;23(1):352. doi: 10.1186/s13054-019-2626-z

22. Helms J, Kremer S, Merdji H. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Jun 4;382(23):2268-70. doi: 10.1056/NEJMc2008597. Epub 2020 Apr 15.

23. Chaumont H, San-Galli A, Martino F, et al. Mixed central and peripheral nervous system disorders in severe SARS-CoV-2 infection. J Neurol. 2020 Nov;267(11):3121-7. doi: 10.1007/s00415-020-09986-y. Epub 2020 Jun 12.

24. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020 Jul;7(7):611-27. doi: 10.1016/S2215-0366(20)30203-0. Epub 2020 May 18.

25. Woo MS, Malsy J, Pöttgen J, et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020 Nov 23;2(2):fcaa205. doi: 10.1093/braincomms/fcaa205. eCollection 2020.

26. Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020 Oct;129:98-102. doi: 10.1016/j.jpsychires.2020.06.022. Epub 2020 Jun 30.

27. Hampshire A, Trender W, Chamberlain SR, et al. Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N=84,285 online study. medRxiv 2020;10.20.20215863. doi: 10.1101/2020.10.20.20215863

28. Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020 Jun 4;12(1):69. doi: 10.1186/s13195-020-00640-3

29. Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020 Aug 1;77(8):1018-27. doi: 10.1001/jamaneurol.2020.2065

30. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-80.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

31. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008 Aug;82(15):7264-75. doi: 10.1128/JVI.00737-08. Epub 2008 May 21.

32. Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020 Jul;140(1):1-6. doi: 10.1007/s00401-020-02166-2. Epub 2020 May 24.

33. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020 Aug 6;383(6):590-2. doi: 10.1056/NEJMc2011400

34. Egbert AR, Cankurtaran S, Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020 Oct;89:543-54. doi: 10.1016/j.bbi.2020.07.014. Epub 2020 Jul 17.

35. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020 Jul;146(1):119-127.e4. doi: 10.1016/j.jaci.2020.04.027. Epub 2020 Apr 29.

36. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020 May 1;130(5):2620-9. doi: 10.1172/JCI137244

37. Hosseini S, Wilk E, Michaelsen-Preusse K, et al. Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J Neurosci. 2018 Mar 21;38(12):3060-80. doi: 10.1523/JNEUROSCI.1740-17.2018. Epub 2018 Feb 27.

38. Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005 Sep 7;25(36):8240-9. doi: 10.1523/JNEUROSCI.1808-05.2005

39. Kollias A, Kyriakoulis KG, Dimakakos E, et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020 Jun;189(5):846-7. doi: 10.1111/bjh.16727. Epub 2020 May 4.

40. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020 Apr 15;22(2):95-7. Online ahead of print.

41. Ковальчук ВВ. Роль новой коронавирусной инфекции (COVID-19) в прогрессировании и развитии сосудистых заболеваний головного мозга. Грамотный выбор средств патогенетической терапии – залог успеха лечения и профилактики. Взгляд специалиста из «красной зоны». Неврология, нейропсихиатрия, психосоматика. 2021;13(1):57-66. doi: 10.14412/2074-2711-2021-1-57-66

42. Szatmaari S, Whitehouse P. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;(1):CD003119. doi: 10.1002/14651858.CD003119

43. Чуканова ЕИ. Современные аспекты эпидемиологии и лечения хронической ишемии мозга на фоне артериальной гипертензии (результаты программы КАЛИПСО). Неврология, нейропсихиатрия, психосоматика. 2011;3(1):38-42. doi: 10.14412/2074-2711-2011-132

44. Табеева ГР, Азимова ЮЭ. Мультимодальная стратегия нейропротекции при инсульте: результаты российской многоцентровой клинико-эпидемиологической программы СОКОЛ (Сравнительная Оценка эффективности Кавинтона и Общепринятых схем Лечения пациентов, перенесших острое нарушение мозгового кровообращения). Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;(12):20-30.

45. Вахнина НВ, Милованова ОВ. Неврологические расстройства у пациентов с артериальной гипертензией и их коррекция. Неврология, нейропсихиатрия, психосоматика. 2016;8(4):32-7. doi: 10.14412/2074-2711-2016-4-32-37

46. Kim D, Rybalkin SD, Pi X, et al. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation. 2001 Nov 6;104(19):2338-43. doi: 10.1161/hc4401.098432

47. Chiu PJ, Tetzloff G, Ahn HS, Sybertz EJ. Comparative effects of vinpocetine and 8-Br-cyclic GMP on the contraction and 45Ca-fluxes in the rabbit aorta. Am J Hypertens. 1988 Jul;1(3 Pt 1):262-8. doi: 10.1093/ajh/1.3.262

48. Osawa M, Maruyama S. Effects of TCV-3B (vinpocetine) on blood viscosity in ischemic cerebrovascular diseases. Ther Hung. 1985;33(1):7-12.

49. Hayakawa M. Effect of vinpocetine on red blood cell deformability in stroke patients. Arzneimittelforschung. 1992 Apr;42(4):425-7.

50. Kuzuya F. Effects of vinpocetine on platelet aggregability and erythrocyte deformability. Ther Hung. 1985;33(1):22-34.

51. Imamoto T, Tanabe M, Shimamoto N, et al. Cerebral circulatory and cardiac effects of vinpocetine and its metabolite, apovincaminic acid, in anesthetized dogs. Arzneimittelforschung. 1984;34(2):161-9.

52. Miyazaki M. The effect of a cerebral vasodilator, vinpocetine, on cerebral vascular resistance evaluated by the Doppler ultrasonic technique in patients with cerebrovascular diseases. Angiology. 1995 Jan;46(1):53-8. doi: 10.1177/000331979504600107

53. Shibota M, Kakihana M, Nagaoka A. [The effect of vinpocetine on brain glucose uptake in mice]. Nihon Yakurigaku Zasshi. 1982 Sep;80(3):221-4 (In Japan.).

54. Solti F. Cavinton, a new cerebral vasodilator. Ther Hung. 1979;27(1):15-6.

55. Solti F, Iskum M, Czako E. Effect of ethyl apovincaminate on the cerebral circulation. Studies in patients with obliterative cerebral arterial disease. Arzneimittelforschung. 1976;26(10a):1945-7.

56. Vora S, Gujar K. Vinpocetine: Hype, Hope and Hurdles towards Neuroprotection. Asian J Pharm Res Devel. 2013;1(4):17-23. Available from: http://ajprd.com/index.php/journal/article/view/71

57. Tamaki N, Kusunoki T, Matsumoto S. The effect of vinpocetine on cerebral blood flow in patients with cerebrovascular disorders. Ther Hung. 1985;33(1):13-21.

58. Tohgi H, Sasaki K, Chiba K, Nozaki Y. Effect of vinpocetine on oxygen release of hemoglobin and erythrocyte organic polyphosphate concentrations in patients with vascular dementia of the Binswanger type. Arzneimittelforschung. 1990 Jun;40(6):640-3.

59. Szakall S, Boros I, Balkay L, et al. Cerebral effects of a single dose of intravenous vinpocetine in chronic stroke patients: a PET study. J Neuroimaging. 1998 Oct;8(4):197-204. doi: 10.1111/jon199884197

60. Szilagyi G, Nagy Z, Balkay L, et al. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: a PET study. J Neurol Sci. 2005 Mar 15;229-30:275-84. doi: 10.1016/j.jns.2004.11.053. Epub 2005 Jan 8.

61. Feher G, Csecsei P, Papp J, et al. The Role of Adjuvant Vinpocetine Therapy in AspirinTreated Cerebrovascular Patients. J Cardiol Ther. 2020;7(1):942-5. Available from: http://www.ghrnet.org/index.php/jct/article/view/3000

62. Zhang C, Yan C. Updates of Recent Vinpocetine Research in Treating Cardiovascular Diseases. J Cell Immunol. 2020;2(5):211-219. doi: 10.33696/immunology.2.045


Рецензия

Для цитирования:


Головачева ВА, Табеева ГР, Кузнецов ИВ. Когнитивные нарушения при COVID-19: взаимосвязь, патогенез и вопросы терапии. Неврология, нейропсихиатрия, психосоматика. 2021;13(2):123-129. https://doi.org/10.14412/2074-2711-2021-2-123-129

For citation:


Golovacheva VA, Tabeeva GR, Kuznetsov IV. Cognitive impairment in COVID-19: associations, pathogenesis and treatment questions. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):123-129. (In Russ.) https://doi.org/10.14412/2074-2711-2021-2-123-129

Просмотров: 1469


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)