Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Gait rehabilitation in patients with spastic hemiparesis: new opportunities

https://doi.org/10.14412/2074-2711-2021-2-56-64

Full Text:

Abstract

 Gait disturbances are a common consequence of stroke. New technologies, such as exoskeletons (ESs), may aid recovery, but their effectiveness has not yet been proven enough.

Objective: to evaluate the effectiveness of medical ESs and spasticity treatment for gait rehabilitation in patients with spastic hemiparesis due to acute stroke.

Patients and methods. The study included 42 patients with spasticity and gait disturbances who has had a stroke 1.5–4 years ago. Clinical assessment included: Tardieu scale (TS), Modified Ashworth scale (MAS), Rankin Scale, Visual Analogue Scale (VAS); 10 Meter Walk Test (10MWT) and Berg balance scale (BBТ), Rivermead Mobility Index (RMI). The patients were  divided into two representative groups (22 and  20 participants). Patients of the 1st group were training in the ES ExoAtlet for 10  days (original method and method of differentiation of efforts were used), the 2nd group was assigned to physical therapy for  the same period. Then all patients received an injection of 300–400 U of botulinum neurotoxin (BNT) under ultrasound control into the spastic muscles of the lower limb. The examination was carried out at three control points (CPs): 1st day (1st), 12th day (2nd), and 33rd day (3rd).

Results and discussion. Comparison of both groups on the 2nd CT showed significantly (p<0.05) better results in the 1st group: 10MWT (0.43 and 0.47 m/s), BBT (42 and 44.5), muscles of the back of the thigh – hamstrings assessed by TS (132° and 137.5°). Gait speed apparently increased due to balance training, correction of postural-phobic disorders, stretching of spastic  muscles, and suppression of the stretch reflex. At the 2nd CPs, injections of incobotulinum toxin (Xeomin®) were performed. On the 3rd CP, significantly (p<0.05) better results were  obtained in the 1st group according to tests: 10MWT (0.49 and 0.56 m/s), BBT (46 and 49), TS (144° and 155°). Comparison of group differences between the 1st and 3rd CPs showed an absolute increase in test results (p<0.01): 10MWT (0.07 and 0.12 m/s), BBT (3.5 and 8.5), TS (14.5° and 22°). Improvement in gait indicators on the third CP demonstrates the potentiating effect of BONT injections and ES exercises.

Conclusion. ES ExoAtlet use is a promising technique for restoring gait: the combined use of an exoskeleton and BONT gives a pronounced potentiating effect. 

About the Authors

A. P. Kovalenko
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

16, Academician Lebedev St., Saint Petersburg 194044, Russia



A. S. Rodionov
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

16, Academician Lebedev St., Saint Petersburg 194044, Russia



D. I. Kremlyov
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

16, Academician Lebedev St., Saint Petersburg 194044, Russia



D. V. Averkiev
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

16, Academician Lebedev St., Saint Petersburg 194044, Russia



V. Yu. Lobzin
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia; Pediatric Research and Clinical Center for Infectious Diseases, Federal Medical Biological Agency; I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia
Russian Federation

16, Academician Lebedev St., Saint Petersburg 194044, Russia;

9, Professor Popov St., Saint Petersburg 197022, Russia;

41, Kirochnaya St., Saint Petersburg 191015, Russia 



A. V. Guseva
Privolzhskiy therapeutic resort complex, Ministry of Defense of Russia
Russian Federation

 Sedmaya proseka St., Samara 443029, Russia 



References

1. Tkachenko PV, Daminov VD, Karpov OE. Application of exoskeleton exoatlet in complex rehabilitation of the spinal cord injury patients. Vestnik vosstanovitel'noy meditsiny. 2017;78(2):126-32 (In Russ.).

2. International classification of functioning, disability and health: ICF. Geneva: World Health Organization; 2001. 311 р.

3. Kovalenko AP. Pathophysiology of spastic paresis. The hypothesis of «incomplete movement». Vestnik Rossiyskoy voyenno- meditsinskoy akademii. 2019;111(12):54-61 (In Russ.).

4. Kovalenko AP, Misikov VK. Botulinum toxin in treatment of lower limb spasticity in patients with brain damage. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018;118(9):28-34 (In Russ.).

5. Daminov VD, Gorokhova IG, Tkachenko PV. Antigravity technologies for walking recovery in clinical rehabilitation. Vestnik vosstanovitel'noy meditsiny. 2015;(4):33-6 (In Russ.).

6. Daminov VD. Robotic locomotor therapy in neurorehabilitation. Vestnik vosstanovitel'noy meditsiny. 2012;(1):57-62 (In Russ.).

7. Koneva ES, Lyadov KV, Shapovalenko TV, Serebryakov AB. The restoration of walking stereotype with robotic device in patients after knee replacement. Travmatologiya i ortopediya Rossii. 2013;2(68):31-8 (In Russ.).

8. Kovalenko AP, Misikov VK. Atlas ul'trazvukovoy vizualizatsii myshts dlya botulinoterapii. Spastichnost'. Diagnostika i lecheniye. Metodicheskoye rukovodstvo [Atlas of ultrasound imaging of muscles for botulinum therapy. Spasticity. Diagnostics and treatment. Methodical guidance]. St Petersburg: Librayt; 2020. 264 p. (In Russ.).

9. Kovalenko AP, Misikov VK, Iskra DA, et al. Tardue scales in the diagnostic of spasticity. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019;119(9):83-90 (In Russ.).

10. Kovalenko AP, Sinelnikov KA, Shamigulov VD, et al. Mapping the limb muscle motor points for targeted administration of botulinum toxin in the treatment of focal and segmental spasticity. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020;12(6):61-70. doi: 10.14412/2074-2711-2020-6-61-70 (In Russ.).

11. Iskra DA, Kovalenko AP, Koshkarev MA, Dyskin DE. Spasticity: from pathophysiology to treatment. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018;118(10):108-14 (In Russ.).

12. Jung H, Ko C, Kim JS, et al. Alterations of relative muscle contribution induced by hemiplegia: Straight and turning gaits. Int J Precis Eng Manufact. 2015;16(10):2219-27. doi: 10.1007/s12541-015-0286-8

13. Tkachenko PV, Daminov VD, Karpov OE. Application of exoskeleton exoatlet in complex rehabilitation of the spinal cord injury patients. Vestnik vosstanovitel'noy meditsiny. 2017;78(2):126-32 (In Russ.).

14. Kotov SV, Lizhdvoy VYu, Sekirin AB, et al. The efficacy of the exoskeleton ExoAtlet to restore walking in patients with multiple sclerosis. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. Spetsvypuski. 2017;117(10):41-7 (In Russ.).

15. Makarova MR, Lyadov KV, Turova EA, Kochetkov AV. Possibilities of modern mechanical therapy in the correction of motor disorders of neurological patients. Vestnik vosstanovitel'noy meditsiny. 2014;(1):54-62 (In Russ.).

16. Klochkov AS, Chernikova LA. Robotic systems in the restoration of walking skills in post-stroke patients. Vestnik vosstanovitel'noy meditsiny. 2014;(3):54-5 (In Russ.).

17. Guidali M, Duschau-Wicke A, Broggi S, et al. A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput. 2011 Oct;49(10):1213-23. doi: 10.1007/s11517-011-0809-0. Epub 2011 Jul 28.

18. Vorob'yev AA, Andryushchenko FA, Zasypkina OA, et al. Terminology and classification of exoskeleton. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2015;3(55):71-7 (In Russ.).

19. Wolbrecht ET, Chan V, Le V, et al. Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering. IEEE; 2007. P. 152-8.

20. Bushkov FA, Kleshchunov SS, Kosyayeva SV, et al. Clinical trial applications of the locomotion exoskeleton «ExoAtlet» in spinal patients. Vestnik vosstanovitel'noy meditsiny. 2017;78(2):90-100 (In Russ.).

21. Abdollahi F, Case Lazarro ED, Listenberger M, et al. Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design. Neurorehabil Neural Repair. 2014 Feb;28(2):120-8. doi: 10.1177/1545968313498649. Epub 2013 Aug 8.

22. Cruciger O, Schildhauer TA, Meindl RC, et al. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health

23. related quality of life (HRQoL) in chronic SCI: a case study. Disabil Rehabil Assist Technol. 2016 Aug;11(6):529-34. doi: 10.3109/17483107.2014.981875. Epub 2014 Nov 10.

24. Kasai R, Takeda S. The effect of a hybrid assistive limb® on sit-to-stand and standing patterns of stroke patients. J Phys Ther Sci. 2016 Jun;28(6):1786-90. doi: 10.1589/jpts.2016.1786. Epub 2016 Jun 28.

25. Mehrholz J, Elsner B, Werner C, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013 Jul 25;2013(7):CD006185. doi: 10.1002/14651858.CD006185.pub3.

26. Casadio M, Sanguineti V. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng. 012 May;20(3):286-96. doi: 10.1109/TNSRE.2012.2190827. Epub 2012 Apr 16.

27. Kovalenko AP, Kamayeva OV, Misikov VK, et al. Scales and tests in the rehabilitation and treatment of patients with spasticity of the lower limbs. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018;118(5):120-8. doi: 10.17116/jneuro201811851120 (In Russ.).

28. Blum L, Korner-Bitensky N. Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Phys Ther. 2008 May;88(5):559-66. doi: 10.2522/ptj.20070205. Epub 2008 Feb 21.

29. Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead mobility index: a further development of the Rivermead motor assessment. Int Disabil Stud. Apr-Jun 1991; 13(2):50-4. doi: 10.3109/03790799109166684

30. Crichton N. Visual analogue scale (VAS). J Clin Nurs. 2001;10(5):706-6.

31. Quinn TJ, Dawson J, Walters M, Lees KR. Reliability of the modified Rankin Scale: a systematic review. Stroke. 2009 Oct;40(10):3393-5. doi: 10.1161/STROKEAHA.109.557256. Epub 2009 Aug 13.

32. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206-7. doi: 10.1093/ptj/67.2.206

33. Van der Ploeg RJO, Oosterhuis H, Reuvekamp J. Measuring muscle strength. J Neurol. 1984;231(4):200-3. doi: 10.1007/BF00313939

34. Watson MJ. Refining the ten-metre walking test for use with neurologically impaired people. Physiotherapy. 2002;88(7):386-97. doi: 10.1016/S0031-9406(05)61264-3

35. Bernnsain NA. Ocherki po fiziologii dvizheniy i fiziologii aktivnosti [Essays on the physiology of movements and physiology of activity]. Moscow: Nauka; 1990 (In Russ.).

36. Granite R. Osnovy regulyatsii dvizheniy [The Basics of the regulation of movements]. Ed. Gurfinkel VS. Moscow: Mir; 1973 (In Russ.).

37. Suchanov VB. Obshchaya sistema simmetrichnoy lokomotsii nazemnykh pozvonochnykh i osobennosti peredvizheniya nizshikh tetrapod [General system of symmetric locomotion of terrestrial vertebrates and peculiarities of movement of lower tetrapods]. Leningrad: Nauka; 1968 (In Russ.).

38. Yanson KhA. Biomekhanika nizhney konechnosti cheloveka [Biomechanics of the human lower limb]. Riga: Zinatne; 1975 (In Russ.).

39. Kotov SV, Isakova EV, Lizhdvoy VYu, et al. Metodicheskiye rekomendatsii po neyroreabilitatsii bol'nykh rasseyannym sklerozom, imeyushchikh narusheniya khod'by, s ispol'zovaniyem ekzoskeleta ExoAtlet [Methodological recommendations for neurorehabilitation of patients with multiple sclerosis, with walking disorders, using ExoAtlet exoskeleton]. Moscow; 2018. 26 p. (In Russ.).

40. Pismennaya EV, Petrushanskaya KA, Kotov SV, et al. Clinical and biomechanical foundation of application of the exoskeleton exoatlet at walking of patients with poststroke disturbances. Rossiyskiy zhurnal biomekhaniki = Russian Journal of Biomechanics. 2019;23(2):204-30 (In Russ.).

41. Picelli A, Bacciga M, Melotti C, et al. Combined effects of robot-assisted gait training and botulinum toxin type A on spastic equinus foot in patients with chronic stroke: a pilot, single blind, randomized controlled trial. Eur J Phys Rehabil Med. 2016 Dec;52(6):759-66. Epub 2016 Apr 21.

42. Erbil D, Tugba G, Murat TH, et al. Effects of robot-assisted gait training in chronic stroke patients treated by botulinum toxin-a: A pivotal study. Physiother Res Int. 2018 Jul;23(3):e1718. doi: 10.1002/pri.1718. Epub 2018 May 28.

43. Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics. 2015;31:132-45. doi: 10.1016/j.mechatronics.2015.04.005

44. Zhang X, Yue Z, Wang J. Robotics in lower-limb rehabilitation after stroke. Behav Neurol. 2017;2017:3731802. doi: 10.1155/2017/3731802. Epub 2017 Jun 8.


For citation:


Kovalenko A.P., Rodionov A.S., Kremlyov D.I., Averkiev D.V., Lobzin V.Yu., Guseva A.V. Gait rehabilitation in patients with spastic hemiparesis: new opportunities. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):56-64. https://doi.org/10.14412/2074-2711-2021-2-56-64

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)