Cognitive impairment in COVID-19 survivors
https://doi.org/10.14412/2074-2711-2021-1-126-130
Abstract
About the Authors
T. M. OstroumovaRussian Federation
Tatiana Maksimovna Ostroumova
8, Trubetskaya St., Build. 2, Moscow 119021
P. A. Chernousov
Russian Federation
8, Trubetskaya St., Build. 2, Moscow 119021
I. V. Kuznetsov
Russian Federation
8, Trubetskaya St., Build. 2, Moscow 119021
References
1. Gusev EI, Martynov MYu, Boyko AN, et al. Novel coronavirus infection (COVID-19) and nervous system involvement: pathogenesis, clinical manifestations, organization of neurological care. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(6):7-16. doi: 10.17116/jnevro20201200617 (In Russ.).
2. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020 Sep;19(9):767-83. doi: 10.1016/S1474-4422(20)30221-0. Epub 2020 Jul 2.
3. Paterson RW, Brown RL, Benjamin L, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020 Oct 1;143(10):3104-20. doi: 10.1093/brain/awaa240
4. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barre Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020 Jun 25;382(26):2574-6. doi: 10.1056/NEJMc2009191. Epub 2020 Apr 17.
5. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment – a review of the evidence and causal mechanisms. Ageing Res Rev. 2013 Sep;12(4):840-51. doi: 10.1016/j.arr.2013.06.004. Epub 2013 Jul 4.
6. Safavynia SA, Goldstein PA. The role of neuroinflammation in postoperative cognitive dysfunction: moving from hypothesis to treatment. Front Psychiatry. 2019 Jan 17;9:752. doi: 10.3389/fpsyt.2018.00752. eCollection 2018.
7. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019;23(1):352. doi: 10.1186/s13054019-2626-z
8. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020 Oct;7(10):875-82. doi: 10.1016/S22150366(20)30287-X. Epub 2020 Jun 25.
9. Pinna P, Grewal P, Hall JP, et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J Neurol Sci. 2020 Aug 15;415:116969. doi: 10.1016/j.jns.2020.116969. Epub 2020 Jun 3.
10. Helms J, Kremer S, Merdji H. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Jun 4;382(23):2268-70. doi: 10.1056/NEJMc2008597. Epub 2020 Apr 15.
11. Chaumont H, San-Galli A, Martino F, et al. Mixed central and peripheral nervous system disorders in severe SARS-CoV-2 infection. J Neurol. 2020 Nov;267(11):3121-7. doi: 10.1007/s00415-020-09986-y. Epub 2020 Jun 12.
12. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611-27. doi: 10.1016/S2215-0366(20)30203-0
13. Woo MS, Malsy J, Pöttgen J, et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020 Nov 23;2(2):fcaa205. doi: 10.1093/braincomms/fcaa205. eCollection 2020.
14. Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020 Oct;129:98-102. doi: 10.1016/j.jpsychires.2020.06.022. Epub 2020 Jun 30.
15. Hampshire A, Trender W, Chamberlain SR, et al. Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N=84,285 online study. medRxiv 2020;10.20.20215863. doi: 10.1101/2020.10.20.20215863
16. Mcloughlin BC, Miles A, Webb TE, et al. Functional and cognitive outcomes after COVID-19 delirium. Eur Geriatr Med. 2020 Oct;11(5):857-62. doi: 10.1007/s41999-02000353-8. Epub 2020 Jul 14.
17. DosSantos MF, Devalle E, Aran V, et al. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat. 2020 Jun 16;14:37. doi: 10.3389/fnana.2020.00037. eCollection 2020.
18. Bohmwald K, Galvez NMS, Rios M, Kalergis AM. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci. 2018 Oct 26;12:386. doi: 10.3389/fncel.2018.00386. eCollection 2018.
19. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005 Aug 1;202(3):415-24. doi: 10.1084/jem.20050828. Epub 2005 Jul 25.
20. Jacomy H, Fragoso G, Almazan G, et al. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006 Jun 5;349(2):335-46. doi: 10.1016/j.virol.2006.01.049. Epub 2006 Mar 9.
21. Arbi YM, Harthi A, Hussein J. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERSCoV). Infection. 2015 Aug;43(4):495-501. doi: 10.1007/s15010-015-0720-y. Epub 2015 Jan 20.
22. Puelles VG, Lutgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020 Aug 6;383(6):590-2. doi: 10.1056/NEJMc2011400. Epub 2020 May 13.
23. Egbert AR, Cankurtaran S, Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020 Oct;89:543-54. doi: 10.1016/j.bbi.2020.07.014. Epub 2020 Jul 17.
24. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S01406736(20)30183-5. Epub 2020 Jan 24.
25. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010 Oct 27;304(16):1787-94. doi: 10.1001/jama.2010.1553
26. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020 Aug;91(8):889-91. doi: 10.1136/jnnp2020-323586. Epub 2020 Apr 30.
27. Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: Targeting of endothelial cells renders a complex Disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv. 2020: 05.18.20099960. doi: 10.1101/2020.05.18.2009996
28. Parfenov VA. Vascular cognitive impairment and chronic cerebral ischemia (dyscirculatory encephalopathy). Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3S):61-7. doi: 10.14412/2074-2711-2019-3S-61-67 (In Russ.).
29. Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun. 2020 Oct;89:594-600. doi: 10.1016/j.bbi.2020.07.037. Epub 2020 Jul 30.
30. Alvarez-Sabin J, Ortega G, Jacas C, et al. Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis. 2013;35(2):146-54. doi: 10.1159/000346602. Epub 2013 Feb 7.
31. Krupinski J, Abudawood M, Matou-Nasri S, et al. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1. Vasc Cell. 2012;4(1):20. doi: 10.1186/2045824X-4-20
32. Fioravanti M, Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev. 2005 Apr 18;(2):CD000269. doi: 10.1002/14651858.CD000269.pub3
33. Golovacheva VA. The role of citicoline in the treatment of dyscirculatory encephalopathy and vascular cognitive impairment. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2020;12(2):119-24. doi: 10.14412/2074-27112020-2-119-124 (In Russ.).
Review
For citations:
Ostroumova T.M., Chernousov P.A., Kuznetsov I.V. Cognitive impairment in COVID-19 survivors. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):126-130. (In Russ.) https://doi.org/10.14412/2074-2711-2021-1-126-130