Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Systematic analysis of molecular biological mechanisms for supporting connective tissue metabolism with chondroitin sulfate

https://doi.org/10.14412/2074-2711-2021-1-154-162

Full Text:

Abstract

Objective: to analyze the roles of undifferentiated connective tissue dysplasia (UCTD) in the development of cartilage and ligamentous apparatus diseases.

Material and methods. This paper presents the results of analyzing the literature on fundamental and clinical studies of relationships between chondroitin sulfate (CS) and connective tissue (CT) disease. A total of 922 publications on the relationship between CT dysplasia and CS and 2249 publications on CS receptor molecules were analyzed. These arrays of publications were analyzed using topological and metric approaches to data analysis.

Results and discussion. The genetic predisposition to UCTD is substantially aggravated by inadequate nutrition that leads to deficiency of certain micronutrients that support CT reconstructive processes. The paper presents the results of a systematic analysis of prospects for the use of drugs based on standardized CS substances in patients with UCTD. CS is a material for CT reconstruction. CS increases the activity of growth factors and reduces CT inflammatory destruction (inhibition of the secretion of histamine, pro-inflammatory chemokines, Toll-like receptors, and the NF-κB cascade through exposure to the CD44 receptor).

Conclusion. The pharmacological effects of CS indicate the importance of using standardized CS forms in the treatment of patients with UCTD.

About the Authors

I. Yu. Torshin
Federal Research Center for Informatics and Management, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Institute of Pharmacoinformatics
44, Vavilov St., Build. 2, Moscow 119333

Center for Big Data Storage and Analysis, National Center for Digital Economy
1, Leninskie Gory, Moscow 119234


O. A. Gromova
Federal Research Center for Informatics and Management, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Olga Alekseevna Gromova

Institute of Pharmacoinformatics
44, Vavilov St., Build. 2, Moscow 119333

Center for Big Data Storage and Analysis, National Center for Digital Economy
1, Leninskie Gory, Moscow 119234


G. I. Nechaeva
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12, Lenin St., Omsk 644099


I. A. Reier
Federal Research Center for Informatics and Management, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Institute of Pharmacoinformatics
44, Vavilov St., Build. 2, Moscow 119333

Center for Big Data Storage and Analysis, National Center for Digital Economy
1, Leninskie Gory, Moscow 119234


N. V. Zagorodniy
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Ministry of Health of Russia; Peoples' Friendship University of Russia (RUDN University)
Russian Federation

Arthroplasty Clinic
10, Priorov St., Moscow 127299

Department of Traumatology and Orthopedics
6, Miklukho-Maklai St., Moscow 117198


References

1. Yakovlev VM, Nechayeva GI. Systemic dysplasia of connective tissue: the clinical significance of the problem for internal diseases. Sibirskiy meditsinskiy zhurnal. 2011;26(3):9-13 (In Russ.).

2. Arsent'yev VG, Baranov VS, Shabalov NP. Nasledstvennyye zabolevaniya soyedinitel'noy tkani kak konstitutsional'naya prichina poliorgannykh narusheniy u detey [Hereditary connective tissue diseases as a constitutional cause of multiple organ disorders in children]. St. Petersburg: SpetsLit; 2015. 231 p. (In Russ.).

3. Mezhdunarodnaya klassifikatsiya bolezney 10-go peresmotra (MKB-10) [International classification of diseases of the 10th revision (ICD-10)]. Available from: http://mkb-10.com/ (accessed 12.01.2021).

4. Nechayeva GI, Martynov AI, Akatova EV, et al. Displaziya soyedinitel'noy tkani: serdechnososudistyye izmeneniya, sovremennyye podkhody k diagnostike i lecheniyu [Connective tissue dysplasia: cardiovascular changes, modern approaches to diagnosis and treatment]. Moscow; 2017 (In Russ.).

5. Filipenko PS, Malookaya YuS. The role of connective tissue dysplasia in the formation of mitral valve prolapse. Klinicheskaya meditsina. 2006;84(12):13-9 (In Russ.).

6. Shupina MI, Tereshchenko YuV, Nechayeva GI, et al. Left-ventricular geometry in young persons with connective tissue dysplasia. Lechashchiy vrach. 2020;(7):14-20 (In Russ.).

7. Beckers AB, Keszthelyi D, Fikree A, et al. Gastrointestinal disorders in joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type: A review for the gastroenterologist. Neurogastroenterol Motil. 2017 Aug;29(8):e13013. doi: 10.1111/nmo.13013

8. Young JJ, Hartvigsen J, Jensen RK, et al. Prevalence of multimorbid degenerative lumbar spinal stenosis with knee and/or hip osteoarthritis: protocol for a systematic review and meta-analysis. Syst Rev. 2020 Oct 7;9(1):232. doi: 10.1186/s13643-020-01478-4

9. Goode AP, Cleveland RJ, Schwartz TA, et al. Relationship of joint hypermobility with low Back pain and lumbar spine osteoarthritis. BMC Musculoskelet Disord. 2019 Apr 9;20(1):158. doi: 10.1186/s12891-0192523-2

10. Kononova NYu, Chernysheva TE, Styazhkina SN. Is connective tissue dysplasia a predictor of premature aging? (The results of the five-year monitoring). Meditsinskiy vestnik Severnogo Kavkaza. 2016;11(2.2):326-30 (In Russ.).

11. Golovskoy BV, Usol'tseva LV, Khovaeva YaB, Ivanova NV. Clinical presentation of connective tissue dysplasia in adults. Klinicheskaya meditsina. 2002;80(12):39-41 (In Russ.).

12. Martynov AI, Nechayeva GI, Akatova EV, et al. Guidelines of the Russian Scientific Medical Society of Internal Medicine on the diagnosis, treatment and rehabilitation of patients with the connective tissue dysplasia (first edition). Meditsinskiy vestnik Severnogo Kavkaza. 2018;13(1-2):137-209 (In Russ.).

13. Alberts B, Johnson A, Lewis J. Molecular Biology of the Cell. 4 th ed. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21054/

14. Торшин ИЮ, Громова ОА. Дисплазия соединительной ткани, клеточная биология и молекулярные механизмы воздействия магния. РМЖ. 2008;16(4):230-8. [Torshin IYu, Gromova OA. Connective tissue dysplasia, cell biology and molecular mechanisms of magnesium exposure. RMZh. 2008;16(4):230-8 (In Russ.)].

15. Torshin IYu, Gromova OA. Connective tissue dysplasia, magnesium and nucleotide polymorphisms. Kardiologiya. 2008;48(10):57-65 (In Russ.).

16. Domnitskaya TM, D'yachenko AV, Kupriyanova OO, Domnitskiy MV. Clinical use of magnesium orotate in adolescents with cardiac connective tissue dysplasia. Kardiologiya. 2005;3(45):76-81 (In Russ.).

17. Kerimkulova NV, Torshin IYu, Gromova OA, et al. Systematic analysis of the molecular physiological effects of the synergistic effects of iron, manganese and copper on connective tissue. Ginekologiya. 2012;14(6):51-8 (In Russ.).

18. Kerimkulova NV, Nikiforova NV, Torshin IYu, et al. Pregnancy and childbirth in women with connective tissue dysplasia and iron deficiency anemia. Voprosy ginekologii, akusherstva i perinatologii. 2014;13(5):11-21 (In Russ.).

19. Lila AM, Gromova OA, Torshin IYu, et al. Molecular effects of chondroguard in osteoarthritis and herniated discs. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(3):88-97. doi: 10.14412/2074-2711-2017-3-88-97 (In Russ.).

20. Torshin IYu, Rudakov KV. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognit Image Anal. 2015;25:577-87. doi: 10.1134/S1054661815040252

21. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of problems of recognition and classification. Part 2: density properties. Pattern Recognit Image Anal. 2016;26(3):483-96.

22. Rosenbloom AL, Silverstein JH. Connective tissue and joint disease in diabetes mellitus. Endocrinol Metab Clin North Am. 1996 Jun;25(2):473-83. doi: 10.1016/s08898529(05)70335-2

23. Gromova OA, Torshin IYu, Semenov VA, et al. On the neurological roles of chondroitin sulfate and glucosamine sulfate: a systematic analysis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):137-43. doi: 10.14412/2074-27112019-3-137-143 (In Russ.).

24. Lila AM, Torshin IYu, Gromova OA. Is it worthwhile rethinking the positive experience of the last 50 years of using chondroitin sulfates against atherosclerosis? FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2020;13(2):184-91. doi: 10.17749/2070-4909/farmakoekonomika.2020.043 (In Russ.).

25. Caterson B, Mahmoodian F, Sorrell JM, et al. Modulation of native chondroitin sulphate structure in tissue development and in disease. J Cell Sci. 1990 Nov;97(Pt 3):411-7.

26. Kosho T. CHST14/D4ST1 deficiency: New form of Ehlers-Danlos syndrome. Pediatr Int. 2016 Feb;58(2):88-99. doi: 10.1111/ped.12878

27. Watanabe Y, Takeuchi K, Higa Onaga S, et al. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J. 2010 Nov 15;432(1):47-55. doi: 10.1042/BJ20100847

28. Morrone A, Tylee KL, Al-Sayed M, et al. Molecular testing of 163 patients with Morquio A (Mucopolysaccharidosis IVA) identifies 39 novel GALNS mutations. Mol Genet Metab. 2014 Jun;112(2):160-70. doi: 10.1016/j.ymgme.2014.03.004

29. Izumikawa T, Kitagawa H. Mice deficient in glucuronyltransferase-I. Prog Mol Biol Transl Sci. 2010;93:19-34. doi: 10.1016/S18771173(10)93002-0

30. Zhen Y, Haugsten EM, Singh SK, Wesche J. Proximity Labeling by a Recombinant APEX2-FGF1 Fusion Protein Reveals Interaction of FGF1 with the Proteoglycans CD44 and CSPG4. Biochemistry. 2018 Jul 3;57(26):3807-16. doi: 10.1021/acs.biochem.8b00120

31. Sepuru KM, Rajarathnam K. Structural basis of chemokine interactions with heparan sulfate, chondroitin sulfate, and dermatan sulfate. J Biol Chem. 2019 Oct 25;294(43):15650-61. doi: 10.1074/jbc.RA119.009879

32. Mack M, Pfirstinger J, Weber C, et al. Chondroitin sulfate A released from platelets blocks RANTES presentation on cell surfaces and RANTES-dependent firm adhesion of leukocytes. Eur J Immunol. 2002 Apr;32(4):1012-20. doi: 10.1002/1521141(200204)32:4<1012::AIDIMMU1012>3.0.CO;2-T

33. Mbemba E, Slimani H, Atemezem A, et al. Glycans are involved in RANTES binding to CCR5 positive as well as to CCR5 negative cells. Biochim Biophys Acta. 2001 Feb 9;1510(1-2):354-66. doi: 10.1016/s00052736(00)00368-0

34. Deshauer C, Morgan AM, Ryan EO, et al. Interactions of the Chemokine CCL5/RANTES with Medium-Sized Chondroitin Sulfate Ligands. Structure. 2015 Jun 2;23(6):1066-77. doi: 10.1016/j.str.2015.03.024

35. Gross AR, Theoharides TC. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors. 2019 Jan;45(1):49-61. doi: 10.1002/biof.1464. Epub 2018 Dec 6.

36. Lorentz A, Baumann A, Vitte J, Blank U. The SNARE Machinery in Mast Cell Secretion. Front Immunol. 2012 Jun 5;3:143. doi: 10.3389/fimmu.2012.00143. eCollection 2012.

37. Frey H, Schroeder N, Manon-Jensen T, et al. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J. 2013 May;280(10):2165-79. doi: 10.1111/febs.12145. Epub 2013 Feb 21.

38. Kawashima H, Hirose M, Hirose J, Nagakubo D. Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J Biol Chem. 2000 Nov 10;275(45):35448-56. doi: 10.1074/jbc.M003387200

39. Ruffell B, Poon GF, Lee SS, et al. Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in Inflammatory and Interleukin 4-activated Macrophages. J Biol Chem. 2011 Jun 3;286(22):19179-90. doi: 10.1074/jbc.M110.200790. Epub 2011 Apr 6.

40. Chiu RK, Carpenito C, Dougherty ST, et al. Identification and characterization of CD44RC, a novel alternatively spliced soluble CD44 isoform that can potentiate the hyaluronan binding activity of cell surface CD44. Neoplasia. 1999 Nov;1(5):446-52. doi: 10.1038/sj.neo.7900045

41. Jones M, Tussey L, Athanasou N, Jackson DG. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J Biol Chem. 2000 Mar 17;275(11):7964-74. doi: 10.1074/jbc.275.11.7964

42. Croft DR, Dall P, Davies D, et al. Complex CD44 splicing combinations in synovial fibroblasts from arthritic joints. Eur J Immunol. 1997 Jul;27(7):1680-4. doi: 10.1002/eji.1830270713

43. Mansson B, Carey D, Alini M, et al. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest. 1995 Mar;95(3):1071-7. doi: 10.1172/JCI117753

44. Gomoll AH. Serum levels of hyaluronic acid and chondroitin sulfate as a non-invasive method to evaluate healing after cartilage repair procedures. Arthritis Res Ther. 2009;11(4):118. doi: 10.1186/ar2730

45. Kim JS, Werth VP. Identification of specific chondroitin sulfate species in cutaneous autoimmune disease. J Histochem Cytochem. 2011 Aug;59(8):780-90. doi: 10.1369/0022155411411304

46. Nzeusseu Toukap A, Galant C, Theate I, et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 2007 May;56(5):1579-88. doi: 10.1002/art.22578

47. Alarcon GS, Willkens RF, Ward JR, et al. Early undifferentiated connective tissue disease. IV. Musculoskeletal manifestations in a large cohort of patients with undifferentiated connective tissue diseases compared with cohorts of patients with well-established connective tissue diseases: followup analyses in patients with unexplained polyarthritis and patients with rheumatoid arthritis at baseline. Arthritis Rheum. 1996 Mar;39(3):403-14. doi: 10.1002/art.1780390308

48. Bollet AJ. Connective tissue polysaccharide metabolism and the pathogenesis of osteoarthritis. Adv Intern Med. 1967;13:33-60.

49. Torshin IYu, Lila AM, Naumov AV, et al. Perspectives of personification of prevention and therapy of osteoarthritis based on the analysis of comorbid background, genetic polymorphisms and microelement status. FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2021;14(1) (In press) (In Russ.).

50. Martinez-Calatrava MJ, Largo R, Herrero-Beaumont G. Improvement of experimental accelerated atherosclerosis by chondroitin sulphate. Osteoarthritis Cartilage. 2010 Jun;18 Suppl 1:S12-6. doi: 10.1016/j.joca.2010.01.014

51. Torshin IYu, Lila AM, Naumov AV, et al. Meta-analysis of clinical trials of the effectiveness of treatment of osteoarthitis with Chondrogard. FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2020;13(4):5-16. doi: 10.17749/2070-4909/farmakoekonomika.2020.066 (In Russ.).

52. Shavlovskaya OA, Zolotovskaya IA, Prokofyeva YuS. Antiresorptive activity of pharmacological chondroitin sulfate in theolder age group. Terapevticheskiy arkhiv = Therapeutic Archive. 2020;92(12):75-9. doi: 10.26442/00403660.2020.12.200448 (In Russ.).


For citation:


Torshin I.Yu., Gromova O.A., Nechaeva G.I., Reier I.A., Zagorodniy N.V. Systematic analysis of molecular biological mechanisms for supporting connective tissue metabolism with chondroitin sulfate. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):154-162. (In Russ.) https://doi.org/10.14412/2074-2711-2021-1-154-162

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)