Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Anti-inflammatory and anti-aging effects of chondroitin sulfate

https://doi.org/10.14412/2074-2711-2020-5-111-116

Full Text:

Abstract

Biological ageing is a process that changes living systems over time, causing impairments in their structure and function. Studying the individual biomarkers of ageing is regarded as the most plausible current theory of age-related inflammatory processes (inflammageing). According to this theory, slightly pronounced chronic aseptic inflammation develops during ageing, which is the basis for the pathogenesis of age-related syndromes and diseases. A key role in implementing different cellular interactions and in regulating the type of an inflammatory response is assigned to the cytokine status (nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and IL-6) in an elderly patient with age-related diseases, such as osteoarthritis (OA) and diabetes mellitus (DM), developed in the altered background. Anti-inflammatory drugs include chondroitin sulfate (CS) that, in addition to directly affecting the severity of pain syndrome in OA, also has a modulating effect on the level of systemic inflammation. Pharmaceutical CS plays an important role in tissue remodeling, cell proliferation, migration, and differentiation, apoptosis, activation and deactivation of chemokines and cytokines, by increasing the synthesis of hyaluronic acid and proteoglycans, by suppressing the synthesis of prostaglandin E2 (PGE2), IL-1, and IL-6 and the expression of cytokines and NF-κB. CS belongs to anti-aging drugs.

About the Authors

O. A. Shavlovskaya
Mental Health Research Center
Russian Federation

Olga A. Shavlovskaya

34A, Kashirskoe Shosse, Moscow 115522



I. A. Zolotovskaya
Samara State Medical University, Ministry of Health of Russia
Russian Federation

89, Chapaevskaya St., Samara 443099



Yu. S. Prokofyeva
A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia; S.I. Spasokukotsky Moscow City Clinical Hospital, Moscow Healthcare Department
Russian Federation

20, Delegatskaya St., Build. 1, Moscow 127473,

21, Vuchetich St., Moscow 127206



References

1. Pereverzev AР, Tkacheva ON, Ermakova DV, et al. Combination of components for sustenance or improvement of elderly and senior age patients’ functional status (anti-age medicine). Consilium Medicum. 2019;21(12):81-6. doi: 10.26442/20751753.2019.12.190621 (In Russ.).

2. Tkacheva ON, Frolova EV, Yakhno NN. Geriatriya. Natsional'noe rukovodstvo [Geriatrics. National guidelance]. Series: National Guides. Moscow: GEOTAR-Media; 2018 (In Russ.).

3. Groznova OS, Miklashevich IM, Voinova VYu, et al. Biomarkers of early cardiovascular aging. Rossiiskiy vestnik perinatologii i pediatrii. 2019;64(4):11-8. doi: 10.21508/1027-40652019- 64-4-11-18 (In Russ.).

4. Skilton MR, Nakhla S, Ayer JG, et al. Telomere length in early childhood: Early life risk factors and association with carotid intimamedia thickness in later childhood. Eur J Prev Cardiol. 2016 Jul;23(10):1086-92. doi: 10.1177/2047487315607075. Epub 2015 Sep 24.

5. Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016 Jun 6;26(11):1480-5. doi: 10.1016/j.cub.2016.04.016. Epub 2016 May 12.

6. Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015 Apr;63(4):776-81. doi: 10.1111/jgs.13310. Epub 2015 Apr 8.

7. O’Toole PW, Paoli M. The contribution of microbial biotechnology to sustainable development goals: microbiome therapies. Microb Biotechnol. 2017 Sep;10(5):1066-9. doi: 10.1111/1751-7915.12752. Epub 2017 Jul 11.

8. Kirkwood KL. Inflammaging. Immunol Invest. 2018 Nov;47(8):770-3. doi: 10.1080/08820139.2018.155239

9. Fulop T, Witkowski JM, Olivieri F, et al. The integration of inflammaging in age-related diseases. Semin Immunol. 2018 Dec;40:17-35. doi: 10.1016/j.smim.2018.09.003. Epub 2018 Oct 2.

10. Brodovskaya TO, Grishina IF. Inflameidzhing: Monografiya [Inflammaging: Monography]. Yekaterinburg: Publisher UMTs UPI; 2020. 216 p. Available from: https://elibrary.ru/item.asp?id=42807607 (accessed 29.08.2020) (In Russ.).

11. Naumov AV, Khovasova NO, Moroz VI, et al. The clinical status and treatment options for osteoarthritis in patients with frailty. Therapeutic archive. 2019;91(12):135-41. doi: 10.26442/00403660.2019.12.000487 (In Russ.).

12. Gromova OA, Torshin IYu, Lila AM, et al. Molecular mechanisms of myoprotective action of chondroitin sulfate and glucosamine sulfate in sarcopenia. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(1):117-24. doi: 10.14412/2074-2711-2019-1-117-124 (In Russ.).

13. Mendel OI, Luchihina LV, Mendel W. Aging and osteoarthritis. Chronic nonspecific inflammation as a link between aging and osteoarthritis (review). Uspekhi gerontologii = Advantege gerontology. 2015;28(2):274-83. Available from: http://www.gersociety.ru/information/uspexi/ (accessed 29.08.2020) (In Russ.).

14. Belova OV, Arefieva TI, Moskvina SN. Immunological aspects of Parkinson’s disease. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(2):110-9. doi: 10.17116/jnevro2020120021110 (In Russ.).

15. Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018 Oct;14(10):576-90. doi: 10.1038/s41574-018-0059-4

16. Zotkin EG, Dydykina IS, Lila AM. Inflammaging, age-related diseases and osteoarthritis. RMJ. 2020;(7):33-8. Available from: https://www.rmj.ru/articles/revmatologiya/Vospalitelynaya_teoriya_stareniya_vozr ast-associirovannye_zabolevaniya_i_osteoartrit/ (accessed 29.08.2020) (In Russ.).

17. Borodkina AV, Deryabin PI, Giukova АА, et al. «Social Life» of Senescent Cells: What Is SASP and Why Study It? Acta Naturae. 2018;10(1):4-14. doi: 10.32607/20758251-2018-10-1-4-14 (In Russ.).

18. Khammad EV, Medzinovskiy YuF, Plotnikova AA. Modern view on molecular biomarkers of aging identified in the blood. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2017;(5):97-104. Available from: https://elibrary.ru/item.asp?id=30457900 (accessed 29.08.2020) (In Russ.).

19. Parcernyak AS, Khalimov YuSh. Chronic inflammation and premature aging – two parallel processes in polymorbid cardiovascular pathology. Vestnik Rossiiskoi Voenno-meditsinskoi akademii = Bulletin of the Russian Military medical Academy. 2019;3(67):78-82. Available from: https://elibrary.ru/item.asp?id=39558790 (accessed 29.08.2020) (In Russ.).

20. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9. doi: 10.1093/gerona/glu057

21. Franceschi C, Garagnani P, Vitale G, et al. Inflammaging and «Garb-aging». Trends Endocrinol Metab. 2017 Mar;28(3):199-212. doi: 10.1016/j.tem.2016.09.005. Epub 2016 Oct 24.

22. Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016 Apr;64(2):111-26. doi: 10.1007/s00005-015-0377-3. Epub 2015 Dec 12.

23. Kiguchi N, Saika F, Kobayashi Y, et al. Epigenetic regulation of CC-chemokine ligand 2 in nonresolving inflammation. BioMol Concepts. 2014 Aug;5(4):265-73. doi: 10.1515/bmc-2014-002

24. Valero T, Moschopoulou G, Mayor-Lopez L, et al. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochem Int. 2012 Dec;61(8):1333-43. doi: 10.1016/j.neuint.2012.09.010. Epub 2012 Sep 25.

25. Barnes PJ. Mechanisms of development of multimorbidity in the elderly. Eur Respir J. 2015 Mar;45(3):790-806. doi: 10.1183/09031936.00229714. Epub 2015 Jan 22.

26. Almeida RS, Pinto MJ, Costa JM. Frailty and pain in an internal medicine ward. Dement Neuropsychol. Jan-Mar 2019;13(1):130-1. doi: 10.1590/1980-57642018dn13-010016

27. Shavlovskaya OA, Romanov ID, Artemenko AR. Combination of injection chondroprotectors for chronic non-specific back pains and osteoarthritis. RMZh. Meditsinskoe obozrenie = RMJ. Medical Review. 2019;11(I):6–12. Available from: https://www.rmj.ru/articles/nevrologiya/Lechenie_nespecificheskoy_boli_v_spine_i_osteoartrita_kombinaciey_inyekcionnyh_form_hondroprotektorov/ (accessed 29.08.2020) (In Russ.).

28. Torshin IYu, Gromova OA, Lila AM, et al. The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2018;12(4):129-36. doi: 10/14412/1996-7012-2018-4-129-136 (In Russ.).

29. Takeuchi S, Nakano S-I, Nakamura K, еt al. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues. Exper Cell Res. 2016 Oct 1;347(2):367-77. doi: 10.1016/j.yexcr.2016.08.023. Epub 2016 Aug 28.

30. Durmus D, Alayli G, Aliyazicioglu Y, et al. Effects of glucosamine sulfate and exercise therapy on serum leptin levels in patients with knee osteoarthritis: preliminary results of randomized controlled clinical trial. Rheumatol Int. 2013;33(3):593-9. doi: 10.1007/s00296-012-2401-9

31. Elgawish MH Zakaria MA, Fahmy HS, et al. Еffect of chondroitin sulfate on cartilage volume loss and subchondral bone marrow lesions in osteoarthritis knee. Egypt Rheumatol Rehabil. 2015;13(3):153-8. doi: 10.4103/1110-161x.163948

32. Tat SK, Pelletier JP, Verges J, et al. Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res Ther. 2007;9(6):R117. doi: 10.1186/ar2325

33. Martel-Pelletier J, Farran A, Montell E, et al. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate. Molecules. 2015 Mar 6;20(3):4277-89. doi: 10.3390/molecules20034277

34. Shavlovskaya OA, Naumov AV, Romanov ID. Treating chronic pain during isolation. Doctor.Ru. Neurology Psychiatry. 2020;19(4):11- 7. doi: 10.31550/1727-2378-2020-19-4-11-17 (In Russ.).

35. Bruyere O, Honvo G, Veronese N, et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019;49(3):337-50. doi: 10.1016/j.semarthrit.2019.04.008

36. Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American College of Rheumatology / Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken). 2020;72(2):149-62. doi: 10.1002/acr.24131

37. Shavlovskaya OA, Naumov AV. Updated recommendations of the American College of rheumatology for the management of patients with osteoarthritis. Remedium. 2020;4-5-6:42- 52. doi: 10.21518/1561-5936-2020-4-5-6-42-52 (In Russ.).

38. Bruyere O, Cooper C, Pelletier JP, et al. An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally: a report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum. 2014;44(3):253-63. doi: 10.1016/j.semarthrit.2014.05.014

39. Alekseeva LI, Taskina EA, Kashevarova NG. Osteoarthritis: epidemiology, classification, risk factors, and progression, clinical presentation, diagnosis, and treatment. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2019;13(2):9-21. doi: 10.14412/1996-7012-2019-2-9-21 (In Russ.).

40. Rutjes AW, Jüni P, da Costa BR, et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann Intern Med. 2012 Aug 7;157(3):180-91. doi: 10.7326/0003-4819-157-3-201208070-00473

41. Torshin IYu, Lila AM, Gromova OA, et al. Anticoagulant and antiplatelet effects of chondroitin sulfate. RMJ. 2020;(7):44-8. Available from: https://www.rmj.ru/articles/revmatologiya/Antikoagulyantnye_i_antiagregantnye_effekty_hondroitina_sulyfata/ (accessed 29.08.2020 (In Russ.).

42. Dydykina IS, Nurbaieva KS, Kovalenko PS, et al. From knowing the mechanism of action to choosing a method for the prevention and treatment of osteoarthritis. RMJ. 2020;(7):14-8. Available from: https://www.rmj.ru/articles/revmatologiya/Ot_znaniya_mehanizma_deystviya__k_prinyatiyu_resheniya_o_vybore_podhoda_k_profilaktike_i_lecheniyu_osteoartrita/ (accessed 29.08.2020) (In Russ.).

43. Zolotovskaya IA, Davydkin IL. A antiresorptive-cytokine effects of chondroprotective therapy in patients with lower back pain. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(4):65-71. doi: 10.17116/jnevro202012004165 (In Russ.).

44. Gromova OA, Torshin IYu, Lila AM, et al. Systematic study review on antitumor effects of glucosamine and chondroitin sulfate cartilage protectors. RMJ. Medical Review. 2019;4(I):4- 10. Available from: https://www.rmj.ru/articles/revmatologiya/Sistematicheskiy_analiz_issledovaniy_protivoopuholevyh_effektov_hondroprotektorov_glyukozamina_sulyfata_i_hondroitina_sulyfata/ (accessed 29.08.2020) (In Russ.).


For citation:


Shavlovskaya O.A., Zolotovskaya I.A., Prokofyeva Yu.S. Anti-inflammatory and anti-aging effects of chondroitin sulfate. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(5):111-116. (In Russ.) https://doi.org/10.14412/2074-2711-2020-5-111-116

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)