Chemotranscriptome analysis indicates the neurotrophic and neuromodulator effects of a citicoline molecule
https://doi.org/10.14412/2074-2711-2020-4-91-99
Abstract
Objective: to investigate the effect of citicoline (CTC) on gene transcription.
Material and methods. Chemotranscriptome analysis of the CTC molecule was carried out on an NPC.TAK model, provided that the cells were incubated with CTC for 24 hours.
Results and discussion. CTC dose-dependently affected the transcription of 8,838 out of 12,716 annotated human genes, mainly by increasing the transcription of the genes involved: 1) in the neurotransmitter metabolism of serotonin (n=36), dopamine (n=32), GABA (n=14), and acetylcholine (n=27); 2) in showing the effects of neurotrophic factors (n=152), including nerve growth factor (n=11); 3) in maintaining the cardiovascular system (vasodilation and cardiac electrical activity; a total of 76 genes). CTC reduced the transcription of the genes, whose protein activity supported inflammation (n=86) and cell division (n=656). CTC elevated the expression of 60 genes involved in triglyceride processing and decreased the expression of 51 genes whose proteins were involved in cholesterol metabolism. CTC increased the transcription of the genes involved in the body’s response to various drugs, including antiepileptic drugs (n=20), dopaminergic agents (n=19), antipsychotics (n=38), anxiolytics (n=21), sedatives (n=22), antidepressants (n=35), anesthetics (n=23), and antidementia drugs (n=11).
Conclusion. Chemotranscriptome analysis indicated the positive effect of CTC on neurotransmission, neuroprotection, lipid profile, and a higher neuronal susceptibility to other neuroactive drugs.
About the Authors
I. Yu. TorshinRussian Federation
44, Vavilov St., Build. 2, Moscow 119333
27, Lomonosovsky Prospect, Build. 1, Moscow 117997
O. A. Gromova
Russian Federation
Olga Alekseevna Gromova
44, Vavilov St., Build. 2, Moscow 119333
27, Lomonosovsky Prospect, Build. 1, Moscow 117997
L. V. Stakhovskaya
Russian Federation
1, Ostrovityanov St., Moscow 117997
V. A. Semenov
Russian Federation
22a, Voroshilov St., Kemerovo 650029
I. A. Shchukin
Russian Federation
1, Ostrovityanov St., Moscow 117997
References
1. Gimenez R, Raich J, Aguilar J. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice. Br J Pharmacol. 1991 Nov;104(3):575-8. doi: 10.1111/j.1476-5381.1991.tb12471.x
2. Teather LA, Wurtman RJ. Dietary CDPcholine supplementation prevents memory impairment caused by impoverished environmental conditions in rats. Learn Mem. 2005 Jan-Feb;12(1):39-43. doi: 10.1101/lm.83905. Epub 2005 Jan 12.
3. Gareri P, Castagna A, Cotroneo AM, et al. The Citicholinage Study: Citicoline Plus Cholinesterase Inhibitors in Aged Patients Affected with Alzheimer's Disease Study. J Alzheimers Dis. 2017;56(2):557-65. doi: 10.3233/JAD-160808
4. Alvarez-Sabin J, Ortega G, Jacas C, et al. Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis. 2013;35(2):146-54. doi: 10.1159/000346602. Epub 2013 Feb 7.
5. Torshin IYu, Gromova OA. Ekspertnyy analiz dannykh v molekulyarnoy farmakologii [Expert data analysis in molecular pharmacology]. Moscow: MTsNMO; 2012. 748 p. ISBN 978-54439-0051-3 (In Russ.).
6. Katzung BG. Basic and Clinical Pharmacology. 9 th ed. McGraw-Hill Medical; 2003. ISBN 0-07-141092-9
7. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27. doi: 10.1002/jat.993
8. Cansev M, Yilmaz MS, Ilcol YO, et al. Cardiovascular effects of CDP-choline and its metabolites: involvement of peripheral autonomic nervous system. Eur J Pharmacol. 2007;577(1-3):129-42. doi: 10.1016/j.ejphar.2007.08.029
9. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. NY (USA): Nova Biomedical Books; 2009. In «Bioinformatics in the Post-Genomic Era» series. ISBN 1-60692-217-0
10. Torshin IYu, Gromova OA, Naumov AV, Lila AM. Chemical transcriptome analysis of glucosamine sulfate molecule in the context of post-genomic pharmacology. RMJ. 2019;1(1):29 (In Russ.).
11. Torshin IYu, Gromova OA, Frolova DE, et al. Dose-dependent chemotranscriptomics analysis of the differential effects of vitamin D3 on gene expression in human neuronal progenitor cells NPC and in MCF7 tumor cells. Farmakokinetika i farmakodinamika = Pharmacokinetics and Pharmacodynamics. 2018;(2):35-51. doi: 10.24411/2587-7836-201810013 (In Russ.).
12. Torshin IYu, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014;24(1):11-23. doi: 10.1134/S1054661814010209
13. Torshin IYu, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 2: Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognit Image Anal. 2014;24(2):196-208. doi: 10.1134/S1054661814020151
14. Torshin IYu. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognit Image Anal. 2011;21(4):652-62. doi: 10.1134/S1054661811040171
15. Torshin IYu, Rudakov KV. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019;29(4):654-67. doi: 10.1134/S1054661819040175
16. Shen XM, Okuno T, Milone M, et al. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Hum Mutat. 2016 Oct;37(10):1051-9. doi: 10.1002/humu.23043. Epub 2016 Aug 21.
17. Tan-Sindhunata MB, Mathijssen IB, Smit M, et al. Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence. Eur J Hum Genet. 2015 Sep;23(9):1151-7. doi: 10.1038/ejhg.2014.273
18. Tian G, Thomas S, Cowan NJ. Effect of TBCD and its regulatory interactor Arl2 on tubulin and microtubule integrity. Cytoskeleton (Hoboken). 2010 Nov;67(11):706-14. doi: 10.1002/cm.20480
19. Davinelli S, Chiosi F, Di Marco R, et al. Cytoprotective effects of citicoline and homotaurine against glutamate and high glucose neurotoxicity in primary cultured retinal cells. Oxid Med Cell Longev. 2017;2017:2825703. doi: 10.1155/2017/2825703. Epub 2017 Oct 15.
20. Jha NK, Jha SK, Kar R, et al. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem. 2019 Jul;150(2):113-37. doi: 10.1111/jnc.14687
21. Brattelid T, Kvingedal AM, Krobert KA, et al. Cloning, pharmacological characterisation and tissue distribution of a novel 5-HT4 receptor splice variant, 5-HT4(i). Naunyn Schmiedebergs Arch Pharmacol. 2004 Jun;369(6):616-28. doi: 10.1007/s00210-0040919-4. Epub 2004 Apr 30.
22. Lee HK, Yeo S, Kim JS, et al. Protein kinase C-eta and phospholipase D2 pathway regulates foam cell formation via regulator of G protein signaling 2. Mol Pharmacol. 2010 Sep;78(3):478-85. doi: 10.1124/mol.110.064394. Epub 2010 Jun 17.
Review
For citations:
Torshin I.Yu., Gromova O.A., Stakhovskaya L.V., Semenov V.A., Shchukin I.A. Chemotranscriptome analysis indicates the neurotrophic and neuromodulator effects of a citicoline molecule. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(4):91-99. (In Russ.) https://doi.org/10.14412/2074-2711-2020-4-91-99