Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Systematic analysis of the molecular pathophysiology of tenosynovitis: promise for using chondroitin sulfate and glucosamine sulfate

Full Text:


The chondroprotectors glucosamine sulfate (GS) and chondroitin sulfate (CS) show a complex anti-inflammatory effect and therefore may be used in the therapy of many diseases concurrent with osteoarthritis.

Objective: to carry out a systematic analysis of the relationship between the molecular pathophysiology of tenosynovitis and the potential mechanisms of pathogenic action of CS/GS in this disease.

Material and methods. The texts of 15 097 publications were systemized using the current methods for topographic big data analysis, which had been developed as part of topological and metric approaches to recognition/classification problems.

Results and discussion. The investigators created a map showing the molecular pathophysiology of tendosynovitis and including 15 molecular mechanisms and 27 comorbidities and identified mechanisms, through which GS/CS could prevent the development of tenosynovitis, such as inhibition of the effects of proinflammatory cytokines (IL-1, IL-8, γ-interferon, and TNF-α), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein, NLRP3 inflammasome, NF-κB and JAK/STAT signaling pathways, and O-glucosamination of proteome proteins. To date, no randomized clinical or cohort (non-interventional) studies of the effects of CS/GS have been conducted in patients with tendosynovitis and comorbidities. However, preclinical studies of GS and CS in the treatment of tendinopathies showed that the drugs had analgesic properties, alleviated chronic inflammation and edema, and improved the maturation of collagen bundles and therefore the mechanical properties of connective tissue in the tendons and ligaments.

Conclusion. The experimental and clinical studies indicate that pharmaceutical-grade GS/CS preparations of high standardization are promising in treating tenosynovitis. 

About the Authors

I. Yu. Torshin
Institute of Pharmacoinformatics, Federal Research Center «Informatics and Management», Russian Academy of Sciences; Big Data Storage and Analysis Center, M.V. Lomonosov Moscow State University
Russian Federation

44, Vavilov St., Build. 2, Moscow 119333, Russia

1, Leninskie Gory, Moscow 119234, Russia

O. A. Gromova
Institute of Pharmacoinformatics, Federal Research Center «Informatics and Management», Russian Academy of Sciences; Big Data Storage and Analysis Center, M.V. Lomonosov Moscow State University
Russian Federation

44, Vavilov St., Build. 2, Moscow 119333, Russia

1, Leninskie Gory, Moscow 119234, Russia 

A. M. Lila
V.A. Nasonova Research Institute of Rheumatology; Department of Rheumatology, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522, Russia

2/1, Barrikadnaya St., Build. 1, Moscow 125993, Russia

O. A. Limanova
Big Data Storage and Analysis Center, M.V. Lomonosov Moscow State University; Ivanovo State Medical Academy, Ministry of Health of Russia
Russian Federation
1, Leninskie Gory, Moscow 119234, Russia

58, Sheremetevsky Prosp., Ivanovo 153012, Russia


1. Ar'kov VV, Badtieva VA, Semenova ES. Etapnaya reabilitatsiya patsientov s travmami golenostopnogo sustava. Metodicheskie rekomendatsii (posobie dlya vrachei) [Stage-by-stage rehabilitation of patients with ankle injuries. Guidelines (manual for doctors)]. Moscow: Klinika sportivnoi meditsiny GbuZ «Moskovskii nauchno-prakticheskii tsentr meditsinskoi reabilitatsii, vosstanovitel'noi i sportivnoi meditsiny departamenta zdravookhraneniya goroda Moskvy»; 2015. 31 p.

2. Gromova OA, Torshin IYu, Lila AM, et al. Chemoreactome analysis of the antithrombotic effects of glucosamine sulfate and nonsteroidal anti-inflammatory drugs. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2019;13(1):129–34. (In Russ.). doi: 10.14412/1996-7012-2019-1-129-134

3. Torshin IYu, Gromova OA, Lila AM, et al. The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2018;12(4):129-36. (In Russ.). doi: 10.14412/1996-7012-2018-4-129-136

4. Gromova OA, Torshin IYu, Lila AM, Gromov AN. Molecular mechanisms of action of glucosamine sulfate in the treatment of degenerative-dystrophic diseases of the joints and spine: results of proteomic analysis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(2):38-44. (In Russ.). doi: 10.14412/2074-2711-2018-2-38-44

5. Gromova OA, Torshin IYu, Lila AM, et al. Molecular mechanisms of myoprotective action of chondroitin sulfate and glucosamine sulfate in sarcopenia. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(1):117-24. (In Russ.). doi: 10.14412/2074-2711-2019-1-117-124

6. Lila AM, Gromova OA, Torshin IYu, et al. Molecular effects of chondroguard in osteoarthritis and herniated discs. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(3):88–97. (In Russ.). doi: 10.14412/2074-2711-2017-3-88-97

7. Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(2):184-99.

8. Torshin IYu. Optimal Dictionaries output information based on the criterion of Solvability and their applications in Bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013; 23(2):319-27.

9. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of recognition and classification problems. Part 1: properties of compactness. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(2):274.

10. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of problems of recognition and classification. Part 2: density properties. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(3):483-96.

11. Zitnik M, Sosivc R, Maheshwari S, Leskovec J. BioSNAP Datasets: Stanford Biomedical Network Dataset Collection, Aug 2018.

12. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019 Jan 8;47(D1): D330-D338. doi: 10.1093/nar/gky1055.

13. Gromova OA, Torshin IYu. Vitamin D. Smena paradigmy [Vitamin D. Paradigm shift]. Moscow: GEOTAR-Media; 2017. 568 p.

14. Simner PJ, Hyle EP, Buckwalter SP, et al. Tenosynovitis caused by a novel nontuberculous Mycobacterium species initially misidentified as a member of the Mycobacterium tuberculosis complex. J Clin Microbiol. 2014 Dec;52(12): 4414-8. doi: 10.1128/JCM.00967-14. Epub 2014 Sep 24.

15. Gromova OA, Torshin IYu, Semenov VA, et al. On the neurological roles of chondroitin sulfate

16. and glucosamine sulfate: a systematic analysis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019; 11(3):137–43. (In Russ.). doi: 10.14412/2074-2711-2019-3-137-143.

17. Morita W, Dakin SG, Snelling SJB, Carr AJ. Cytokines in tendon disease: A Systematic Review. Bone Joint Res. 2017 Dec;6(12): 656-664. doi: 10.1302/2046-3758.612.BJR-2017-0112.R1.

18. Mobasheri A, Shakibaei M. Is tendinitis an inflammatory disease initiated and driven by pro-inflammatory cytokines such as interleukin 1beta? Histol Histopathol. 2013 Aug;28(8):955-64. doi: 10.14670/HH-28.955. Epub 2013 Mar 6.

19. Chen Q, Zhou J, Zhang B, et al. Cyclic Stretching Exacerbates Tendinitis by Enhancing NLRP3 Inflammasome Activity via F-Actin Depolymerization. Inflammation. 2018 Oct;41(5): 1731-1743. doi: 10.1007/s10753-018-0816-5.

20. Eskildsen SM, Berkoff DJ, Kallianos SA, Weinhold PS. The use of an IL1-receptor antagonist to reverse the changes associated with established tendinopathy in a rat model. Scand J Med Sci Sports. 2019 Jan;29(1):82-88. doi: 10.1111/sms.13310. Epub 2018 Oct 15.

21. Wang Y, He G, Tang H, et al. Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT-3 signalling pathway. Cell Prolif. 2019 Jul;52(4):e12650. doi: 10.1111/cpr.12650. Epub 2019 Jun 21.

22. Grzanna MW, Au RY, Au AY, et al. Avocado/Soybean Unsaponifiables, Glucosamine and Chondroitin Sulfate Combination Inhibits Proinflammatory COX-2 Expression and Prostaglandin E2 Production in TendonDerived Cells. J Med Food. 2020 Feb;23(2): 139-146. doi: 10.1089/jmf.2019.0022. Epub 2019 Sep 5.

23. Hua J, Sakamoto K, Kikukawa T, et al. Evaluation of the suppressive actions of glucosamine on the interleukin-1beta-mediated activation of synoviocytes. Inflamm Res. 2007 Oct;56(10):432-8. doi: 10.1007/s00011-007-7020-7.

24. Jiang L, Jin Y, Wang H, et al. Glucosamine protects nucleus pulposus cells and induces autophagy via the mTOR-dependent pathway. J Orthop Res. 2014 Nov;32(11):1532-42. doi: 10.1002/jor.22699. Epub 2014 Aug 2.

25. Chiu HW, Li LH, Hsieh CY, et al. Glucosamine inhibits IL-1beta expression by preserving mitochondrial integrity and disrupting assembly of the NLRP3 inflammasome. Sci Rep. 2019 Apr 3;9(1):5603. doi: 10.1038/s41598-019-42130-z.

26. Someya A, Ikegami T, Sakamoto K, Nagaoka I. Glucosamine Downregulates the IL-1betaInduced Expression of Proinflammatory Cytokine Genes in Human Synovial MH7A Cells by O-GlcNAc Modification-Dependent and -Independent Mechanisms. PLoS One. 2016 Oct 24;11(10):e0165158. doi: 10.1371/journal.pone.0165158.eCollection 2016.

27. Gouze JN, Gouze E, Popp MP, et al. Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta. Arthritis Res Ther. 2006;8(6):R173. doi: 10.1186/ar2082.

28. McHugh J. Targeting NF-kappaB in tendinopathy. Nat Rev Rheumatol. 2019 May;15(5):251. doi: 10.1038/s41584-019-0206-x.

29. Dakin SG, Newton J, Martinez FO, et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br J Sports Med. 2018 Mar;52(6):359-367. doi: 10.1136/bjsports-2017-098161. Epub 2017 Nov 8.

30. Akbar M, Gilchrist DS, Kitson SM, et al. Targeting danger molecules in tendinopathy: the HMGB1/TLR4 axis. RMD Open. 2017 Jul 28;3(2):e000456. doi: 10.1136/rmdopen-2017-000456. eCollection 2017.

31. Li K, Deng G, Deng Y, et al. High cholesterol inhibits tendon-related gene expressions in tendon-derived stem cells through reactive oxygen species-activated nuclear factor-kappaB signaling. J Cell Physiol. 2019 Aug;234(10): 18017-18028. doi: 10.1002/jcp.28433. Epub 2019 Mar 1.

32. Abraham AC, Shah SA, Golman M, et al. Targeting the NF-kappaB signaling pathway in chronic tendon disease. Sci Transl Med. 2019 Feb 27;11(481). pii: 11/481/eaav4319. doi: 10.1126/scitranslmed.aav4319.

33. Tan GK, Tabata Y. Chondroitin-6-sulfate attenuates inflammatory responses in murine macrophages via suppression of NF-kappaB nuclear translocation. Acta Biomater. 2014 Jun; 10(6):2684-92. doi: 10.1016/j.actbio.2014.02.025. Epub 2014 Feb 21.

34. Stabler TV, Huang Z, Montell E, et al. Chondroitin sulphate inhibits NF-kappaB activity induced by interaction of pathogenic and damage associated molecules. Osteoarthritis Cartilage. 2017 Jan;25(1):166-174. doi: 10.1016/j.joca.2016.08.012. Epub 2016 Sep 7.

35. Rafi MM, Yadav PN, Rossi AO. Glucosamine inhibits LPS-induced COX-2 and iNOS expression in mouse macrophage cells (RAW 264.7) by inhibition of p38-MAP kinase and transcription factor NF-kappaB. Mol Nutr Food Res. 2007 May;51(5):587-93. doi: 10.1002/mnfr.200600226.

36. Kim JA, Ahn BN, Kong CS, Kim SK. Antiinflammatory action of sulfated glucosamine on cytokine regulation in LPS-activated PMA-differentiated THP-1 macrophages. Inflamm Res. 2011 Dec;60(12):1131-8. doi: 10.1007/s00011-011-0377-7. Epub 2011 Aug 30.

37. Bak YK, Lampe JW, Sung MK. Effects of dietary supplementation of glucosamine sulfate on intestinal inflammation in a mouse model of experimental colitis. J Gastroenterol Hepatol. 2014 May;29(5):957-63. doi: 10.1111/jgh.12485.

38. Wu YL, Lin AH, Chen CH, et al. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Free Radic Biol Med. 2014 Apr;69:208-18. doi: 10.1016/j.freeradbiomed.2014.01.026. Epub 2014 Jan 28.

39. Azuma K, Osaki T, Wakuda T, et al. Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation. 2012 Aug;35(4):1462-5. doi: 10.1007/s10753-012-9459-0.

40. Shin JA, Hwang JS, Kim SY, et al. A novel glucosamine derivative exerts anti-inflammatory actions via inhibition of nuclear factor-kappaB. Neurosci Lett. 2013 Aug 29;550:162-7. doi: 10.1016/j.neulet.2013.06.053. Epub 2013 Jul 3.

41. Ramakrishnan P, Clark PM, Mason DE, et al. Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation. Sci Signal. 2013 Aug 27;6(290):ra75. doi: 10.1126/scisignal.2004097.

42. Schoenenberger AD, Foolen J, Moor P, et al. Substrate fiber alignment mediates tendon cell response to inflammatory signaling. Acta Biomater. 2018 Apr 15;71:306-317. doi: 10.1016/j.actbio.2018.03.004. Epub 2018 Mar 10.

43. Riley GP, Harrall RL, Constant CR, et al. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis. 1994 Jun; 53(6):367-76. doi: 10.1136/ard.53.6.367.

44. Wu PT, Su WR, Li CL, et al. Inhibition of CD44 induces apoptosis, inflammation, and matrix metalloproteinase expression in tendinopathy. J Biol Chem. 2019 Dec 27;294(52): 20177-20184. doi: 10.1074/jbc.RA119.009675. Epub 2019 Nov 15.

45. Bartus K, James ND, Didangelos A, et al. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci. 2014 Apr 2; 34(14):4822-36. doi: 10.1523/JNEUROSCI.4369-13.2014.

46. Hua J, Sakamoto K, Nagaoka I. Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis, on the functions of neutrophils. J Leukoc Biol. 2002 Apr;71(4):632-40.

47. Chen JT, Chen CH, Horng CT, et al. Glucosamine sulfate inhibits proinflammatory cytokine-induced icam-1 production in human conjunctival cells in vitro. J Ocul Pharmacol Ther. 2006 Dec;22(6):402-16. doi: 10.1089/jop.2006.22.402.

48. Chen JT, Chen PL, Chang YH, et al. Glucosamine sulfate inhibits leukocyte adhesion in response to cytokine stimulation of retinal pigment epithelial cells in vitro. Exp Eye Res. 2006 Nov;83(5):1052-62. doi: 10.1016/j.exer.2006.05.010. Epub 2006 Jul 5.

49. Chen JT, Liang JB, Chou CL, et al. Glucosamine sulfate inhibits TNF-alpha and IFN-gamma-induced production of ICAM-1 in human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci. 2006 Feb;47(2): 664-72. doi: 10.1167/iovs.05-1008.

50. Imagawa K, de Andres MC, Hashimoto K, et al. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-κB) inhibitor on primary human chondrocytes-implications for osteoarthritis. Biochem Biophys Res Commun. 2011 Feb 18;405(3):362-7. doi: 10.1016/j.bbrc.2011.01.007. Epub 2011 Jan 8.

51. Fusini F, Bisicchia S, Bottegoni C, et al. Nutraceutical supplement in the management of tendinopathies: a systematic review. Muscles Ligaments Tendons J. 2016 May 19;6(1):48-57. doi: 10.11138/mltj/2016.6.1.048. eCollection 2016 Jan-Mar.

52. Gosudarstvennaya farmakopeya Rossiiskoi Federatsii [State Pharmacopoeia of the Russian Federation]. 14th ed. Vol. 1. Moscow; 2018.


For citations:

Torshin I.Yu., Gromova O.A., Lila A.M., Limanova O.A. Systematic analysis of the molecular pathophysiology of tenosynovitis: promise for using chondroitin sulfate and glucosamine sulfate. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(2):64-71. (In Russ.)

Views: 772

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)