Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Pharmacogenetics of drug-induced dyskinesias in Parkinson's disease

https://doi.org/10.14412/2074-2711-2020-1-87-92

Full Text:

Abstract

Levodopa remains the gold standard of treating Parkinson's disease (PD). However, the inevitable complication of levodopa therapy is druginduced dyskinesias, which significantly limits the therapeutic capabilities of this group of drugs and requires treatment adjustment. At the same time, patients with PD show not only a wide interindividual variability in the response to levodopa treatment, but also differences in the frequency and time to onset of drug-induced dyskinesias. Therefore, genetic predisposition can play an important role in the development of complications of levodopa therapy.
The paper reviews modern literature on the impact of mutations in the genes, the products of which are involved in the exchange of levodopa and are capable of provoking or, conversely, levelling the development of drug-induced dyskinesias in order to determine the possibilities of expanding the personalized approach to treating patients with PD.


About the Authors

A. A. Tappakhov
M.K. Ammosov North-Eastern Federal University, Ministry of Education and Science of Russia; Yakutsk Research Center for Complex Medical Problems, Ministry of Education and Science of Russia
Russian Federation

58, Belinsky St., Yakutsk, 677000

4, Sergelyakhskoe Shosse, Yakutsk 



T. E. Popova
M.K. Ammosov North-Eastern Federal University, Ministry of Education and Science of Russia; Yakutsk Research Center for Complex Medical Problems, Ministry of Education and Science of Russia
Russian Federation

58, Belinsky St., Yakutsk, 677000

4, Sergelyakhskoe Shosse, Yakutsk



T. G. Govorova
M.K. Ammosov North-Eastern Federal University, Ministry of Education and Science of Russia
Russian Federation

58, Belinsky St., Yakutsk, 677000



N. A. Shnaider
V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Ministry of Health of Russia
Russian Federation
3, Bekhterev St., Saint Petersburg, 192019



M. R. Sapronova
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation
1, Partisan Zheleznyak St., Krasnoyarsk, 660022



References

1. Обухова АВ. Современная терапия болезни Паркинсона. Неврология, нейропсихиатрия, психосоматика. 2014;6(3):80-4.doi: 10.14412/2074-2711-2014-3-80-84

2. Ferreira JJ, Katzenschlager R, Bloem BR, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson's disease. Eur J Neurol. 2013 Jan;20(1):5-15. doi: 10.1111/j.1468-1331.2012.03866.x.

3. Левин ОС. Леводопа-индуцированные дискинезии при болезни Паркинсона: возможности предупреждения и терапии. Современная терапия в психиатрии и неврологии. 2015;(3):15-25.

4. Heumann R, Moratalla R, Herrero MT, et al. Dyskinesia in Parkinson's disease: mechanisms and current non-pharmacological interventions. J Neurochem. 2014 Aug;130(4):472-89. doi: 10.1111/jnc.12751. Epub 2014 Jun 7.

5. Захаров ДВ, Богачева ВА, Михайлов ВА и др. Качество жизни пациентов с дрожательной формой болезни Паркинсона. Обозрение психиатрии и медицинской психологии. 2015;(1):33-7.

6. Encarnacion EV, Hauser RA. Levodopainduced dyskinesias in Parkinson's disease: Etiology, impact on quality of life, and treatments. Eur Neurol. 2008;60(2):57-66. doi: 10.1159/000131893. Epub 2008 May 15.

7. Иллариошкин СН. Производные амантадина в лечении болезни Паркинсона. Нервные болезни. 2016;(3):14-9.

8. Wolf E, Seppi K, Katzenschlager R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson's disease. Mov Disord. 2010 Jul 30;25(10):1357-63. doi: 10.1002/mds.23034.

9. Deane KH, Spieker S, Clarke CE. Catechol-O-methyltransferase inhibitors for levodopa-induced complications in Parkinson's disease. Cochrane Database Syst Rev. 2004 Oct 18;(4):CD004554.

10. Chen J, Lipska BK, Halim N, et al. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am J Hum Genet. 2004 Nov;75(5):807-21. Epub 2004 Sep 27. doi:10.1086/425589

11. Muellner J, Gharrad I, Habert MO, et al. Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson's disease. Parkinsonism Relat Disord. 2015 May;21(5):471-6. doi: 10.1016/j.parkreldis.2015.02.009. Epub 2015 Feb 19.

12. Bialecka M, Drozdzik M, Klodowska-Duda G, et al. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson's disease. Acta Neurol Scand. 2004 Oct;110(4):260-6. doi:10.1111/j.1600-0404.2004.00315.x

13. De Lau LM, Verbaan D, Marinus J, et al. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson's disease. Mov Disord. 2012 Jan;27(1):132-5. doi: 10.1002/mds.23805. Epub 2011 Nov 14.

14. Sampaio TF, dos Santos EUD, de Lima GDC, et al. MAO-B and COMT Genetic Variations Associated With Levodopa Treatment Response in Patients With Parkinson's Disease. J Clin Pharmacol. 2018 Jul;58(7):920-926. doi: 10.1002/jcph.1096. Epub 2018 Mar 26.

15. Mü ller T, Mö hr JD. Pharmacokinetics of monoamine oxidase B inhibitors in Parkinson's disease: current status. Expert Opin Drug Metab Toxicol. 2019 May;15(5):429-435. doi: 10.1080/17425255.2019.1607292. Epub 2019 Apr 24.

16. Steventon GB, Sturman SG, Heafield MT, et al. Platelet monoamine oxidase-B activity in Parkinson's disease. J Neural Transm Park Dis Dement Sect. 1989;1(4):255-61.

17. Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol Neurobiol. 2004 Aug;30(1):77-89. doi: 10.1385/MN:30:1:077

18. Balciuniene J, Emilsson L, Oreland L, et al. Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet. 2002 Jan;110(1):1-7. Epub 2001 Dec 7. doi: 10.1007/s00439-001-0652-8

19. Liu Y, Wang Z, Zhang B. The relationship between monoamine oxidase B (MAOB) A644G polymorphism and Parkinson disease risk: A meta-analysis. Ann Saudi Med. 2014 Jan–Feb;34(1):12-7. doi: 10.5144/0256-4947.2014.12.

20. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012 Apr;64(2):238-58. doi: 10.1124/pr.111.005108. Epub 2012 Mar 8.

21. Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003 Jan 24;112(2):257-69. doi: 10.1016/s0092-8674(03)00035-7

22. Sortwell C, Auinger P, Goudreau J, et al. BDNF rs6265 and other variants predict the efficacy of levodopa monotherapy in early-stage Parkinson's disease. Mov Disord. 2018; 33(Suppl 2):S195.

23. Foltynie T, Cheeran B, Williams-Gray CH, et al. BDNF Val66Met influences time to onset of levodopa induced dyskinesia in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2009 Feb; 80(2):141-4. doi: 10.1136/jnnp.2008.154294. Epub 2008 Oct 31.

24. Kusters CDJ, Paul KC, Guella I, et al. Dopamine receptors and BDNF-haplotypes predict dyskinesia in Parkinson's disease. Parkinsonism Relat Disord. 2018 Feb;47:39-44. doi: 10.1016/j.parkreldis.2017.11.339. Epub 2017 Nov 24.

25. Yin Y, Su X, Pan L, Li C. BDNF Val66Met polymorphism and cognitive impairment in Parkinson's disease-a meta-analysis. Neurol Sci. 2019 Sep;40(9):1901-1907. doi: 10.1007/s10072-019-03907-2. Epub 2019 May 18.

26. Pal P, Sadhukhan T, Chakraborty S, et al. Role of Apolipoprotein E, Cathepsin D, and Brain-Derived Neurotrophic Factor in Parkinson's Disease: A Study from Eastern India. Neuromolecular Med. 2019 Sep;21(3): 287-294. doi: 10.1007/s12017-019-08548-4. Epub 2019 May 28.

27. Robertson BD, Al Jaja AS, MacDonald AA, et al. SLC6A3 polymorphism predisposes to dopamine overdose in Parkinson's disease. Front Neurol. 2018 Aug 21;9:693. doi: 10.3389/fneur.2018.00693. eCollection 2018.

28. Sery O, Paclt I, Drtilkova I, et al. A 40-bp VNTR polymorphism in the 3'-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav Brain Funct. 2015 Jun 11;11:21. doi: 10.1186/s12993-015-0066-8.

29. Sano A, Kondoh K, Kakimoto Y, Kondo I. A 40-nucleotide repeat polymorphism in the human dopamine transporter gene. Hum Genet. 1993 May;91(4):405-6. doi: 10.1007/BF00217369

30. Faraone S V, Spencer TJ, Madras BK, et al. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry. 2014 Aug;19(8):880-9. doi: 10.1038/mp.2013.126. Epub 2013 Sep 24.

31. Zhai D, Li S, Zhao Y, Lin Z. SLC6A3 is a risk factor for Parkinson's disease: a metaanalysis of sixteen years' studies. Neurosci Lett. 2014 Apr 3;564:99-104. doi: 10.1016/j.neulet.2013.10.060. Epub 2013 Nov 7.

32. Kaiser R, Hofer A, Grapengiesser A, et al. L-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology. 2003 Jun 10;60(11):1750-5. doi: 10.1212/01.wnl.0000068009.32067.a1

33. Kaplan N, Vituri A, Korczyn AD, et al. Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson's disease. J Mol Neurosci. 2014 Jun;53(2):183-8. doi: 10.1007/s12031-014-0276-9. Epub 2014 Mar 15.

34. Purcaro C, Vanacore N, Moret F, et al. DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson's disease. Neurosci Lett. 2019 Jan 18;690:83-88. doi: 10.1016/j.neulet.2018.10.021. Epub 2018 Oct 11.

35. Moreau C, Meguig S, Corvol JC, et al. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson's disease. Brain. 2015 May;138(Pt 5): 1271-83. doi: 10.1093/brain/awv063. Epub 2015 Mar 23.

36. Becker ML, Visser LE, Van Schaik RH, et al. OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics. 2011 Feb;12(1):79-82. doi: 10.1007/s10048-010-0254-5. Epub 2010 Aug 1.

37. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007 Jul;24(7):1227-51. Epub 2007 May 1. doi: 10.1007/s11095-007-9254-z

38. Okura T, Ito R, Ishiguro N, et al. Bloodbrain barrier transport of pramipexole, a dopamine D2 agonist. Life Sci. 2007 Apr 3;80(17):1564-71. Epub 2007 Jan 27. doi: 10.1016/j.lfs.2007.01.035

39. Goralski KB, Lou G, Prowse MT, et al. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002 Dec; 303(3):959-68. doi:10.1124/jpet.102.038885

40. Becker ML, Visser LE, van Schaik RH, et al. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009 Aug;9(4):242-7. doi: 10.1038/tpj.2009.15. Epub 2009 Apr 21.

41. Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci. 2018 May 31;12:1179069518779829. doi: 10.1177/1179069518779829. eCollection 2018.

42. Beaulieu JM, Gainetdinov RR. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol Rev. 2011 Mar;63(1):182-217. doi: 10.1124/pr.110.002642. Epub 2011 Feb 8.

43. Cichon S, NЪthen MM, Erdmann J, et al. Detection of four polymorphic sites in the human dopamine D1 receptor gene (DRD1). Hum Mol Genet. 1994 Jan;3(1):209. doi: 10.1093/hmg/3.1.209

44. Oliveri RL, Annesi G, Zappia M, et al. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology. 1999 Oct 22;53(7):1425-30. doi: 10.1212/wnl.53.7.1425

45. Ахмадеева ГН, Хидиятова ИМ, Насибуллин ТР и др. Исследование ассоциации полиморфных вариантов генов дофаминергической системы (DRD1, DRD2, DRD3, DRD4, TH, COMT и MAO-B) с идиопатической болезнью Паркинсона. Якутский медицинский журнал. 2017;(3):5-9.

46. Xu S, Liu J, Yang X, et al. Association of the DRD2 CAn-STR and DRD3 Ser9Gly polymorphisms with Parkinson's disease and response to dopamine agonists. J Neurol Sci. 2017 Jan 15;372:433-438. doi: 10.1016/j.jns.2016.08.005. Epub 2016 Aug 3.

47. Rieck M, Schumacher-Schuh AF, Altmann V, et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson's disease patients. Pharmacogenomics. 2012 Nov; 13(15):1701-10. doi: 10.2217/pgs.12.149.

48. Jö nsson EG, Nö then MM, Grü nhage F, et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 1999 May;4(3):290-6. doi:10.1038/sj.mp.4000532

49. Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology. 2001 Jun 26;56(12):1757-9.

50. dos Santos EUD, Sampaio TF, Tenorio dos Santos AD, et al. The influence of SLC6A3 and DRD2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson's disease. J Pharm Pharmacol. 2019 Feb;71(2):206-212. doi: 10.1111/jphp.13031. Epub 2018 Oct 23.

51. Иванова СА, Алифирова ВМ, Жукова ИА и др. Ассоциация полиморфизмов гена DRD3 с болезнью Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(5):71-4.

52. Lee JY, Cho J, Lee EK, et al. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson's disease. Mov Disord. 2011 Jan;26(1):73-9. doi: 10.1002/mds.23400. Epub 2010 Oct 13.

53. Comi C, Ferrari M, Marino F, et al. Polymorphisms of dopamine receptor genes and risk of l-dopa-induced dyskinesia in parkinson's disease. Int J Mol Sci. 2017 Jan 24;18(2). pii: E242. doi: 10.3390/ijms18020242.

54. Sassone J, Valtorta F, Ciammola A. Early dyskinesias in Parkinson's disease patients with parkin mutation: a primary corticostriatal synaptopathy? Front Neurosci. 2019 Mar 26; 13:273. doi: 10.3389/fnins.2019.00273. eCollection 2019.


For citation:


Tappakhov A.A., Popova T.E., Govorova T.G., Shnaider N.A., Sapronova M.R. Pharmacogenetics of drug-induced dyskinesias in Parkinson's disease. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(1):87-92. (In Russ.) https://doi.org/10.14412/2074-2711-2020-1-87-92

Views: 180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)