О неврологических ролях хондроитина сульфата и глюкозамина сульфата: систематический анализ
https://doi.org/10.14412/2074-2711-2019-3-137-143
Аннотация
Ключевые слова
Об авторах
О. А. ГромоваРоссия
119333, Москва, ул. Вавилова, 44, корп. 2;
Центр хранения и анализа больших данных, 119234, Москва, Ленинские горы, 1
И. Ю. Торшин
Россия
119333, Москва, ул. Вавилова, 44, корп. 2;
Центр хранения и анализа больших данных, 119234, Москва, Ленинские горы, 1
В. А. Семенов
Россия
Центр хранения и анализа больших данных, 119234, Москва, Ленинские горы, 1;
650056, Кемерово, ул. Ворошилова, 22а
Л. И. Стаховская
Россия
НИИ цереброваскулярной патологии и инсульта,
117997, Москва, ул. Островитянова, 1
К. В. Рудаков
Россия
119333, Москва, ул. Вавилова, 44, корп. 2;
Центр хранения и анализа больших данных, 119234, Москва, Ленинские горы, 1
Список литературы
1. Торшин ИЮ, Громова ОА. Мультимодальный эффект церебролизина против воинствующего редукционизма. Неврологический вестник им. В.М. Бехтерева. 2008;(3): 83-91.
2. Путилина МВ. Комбинированная нейропротекторная терапия при цереброваскулярных заболеваниях. Врач. 2012;(4):69-73.
3. Парфенов ВА. Причины, диагностика и лечение боли в нижней части спины. Неврология, нейропсихиатрия, психосоматика. 2009;1(1):19-22. doi: 10.14412/2074-2711-2009-17
4. Столярова ЛГ, Ткачева ГР. Реабилитация больных с постинсультными двигательными расстройствами. Москва: Медгиз; 1978. 216 с.
5. Теленков АА, Кадыков АС, Вуйцик НБ и др. Постинсультные артропатии: феменология, структурные изменения суставов. Альманах клинической медицины. 2015; (39):39-44.
6. Широков ВА. Боль в плече. Патогенез. Диагностика. Лечение. Москва: МЕДпрессинформ; 2012. 240 c.
7. Лила АМ, Громова ОА, Торшин ИЮ и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017;9(3):88-97. doi: 10.14412/2074-2711-2017-3-88-97
8. Парфенов ВА. Нервные болезни. Москва: МИА; 2018. 496 с.
9. Парфенов ВА, Исайкин АИ. Боль в нижней части спины: мифы и реальность. Москва: ИМА-ПРЕСС; 2016. 104 с. [Parfenov VA, Isaikin AI. Bol' v nizhnei chasti spiny: mify i real'nost' [Low back pain: myths and reality]. Moscow: IMA-PRESS; 2016. 104 p.]
10. Торшин ИЮ, Громова ОА, Стаховская ЛВ и др. Дифференциальный хемореактомный анализ синергидных комбинаций толперизона и нестероидных противовоспалительных препаратов. Неврология, нейропсихиатрия, психосоматика. 2019;11(2): 78-85. doi: 10.14412/2074-2711-2019-2-78-85
11. Торшин ИЮ, Громова ОА, Федотова ЛЭ, Громов АН. Сравнительный хемореактомный анализ декскетопрофена, кетопрофена и диклофенака. Неврология, нейропсихиатрия, психосоматика. 2018;10(1):47-54. doi: 10.14412/2074-2711-2018-1-47-54
12. Громова ОА, Торшин ИЮ, Лила АМ и др. Хемореактомный анализ антитромботических эффектов глюкозамина сульфата и нестероидных противовоспалительных препаратов. Современная ревматология. 2019;13(1):129–34. doi: 10.14412/1996-7012-2019-1-129-134
13. Торшин ИЮ, Громова ОА, Лила АМ и др. Результаты постгеномного анализа молекулы глюкозамина сульфата указывают на перспективы лечения коморбидных заболеваний. Современная ревматология. 2018; 12(4):129-36. doi: 10.14412/1996-7012-2018-4-129-136
14. Громова ОА, Торшин ИЮ, Лила АМ, Громов АН. Молекулярные механизмы глюкозамина сульфата при лечении дегенеративно-дистрофических заболеваний суставов и позвоночника: результаты протеомного анализа. Неврология, нейропсихиатрия, психосоматика. 2018;10(2):38-44. doi: 10.14412/2074-2711-2018-2-38-44
15. Громова ОА, Торшин ИЮ, Лила АМ и др. Молекулярные механизмы миопротективного действия хондроитина сульфата и глюкозамина сульфата при саркопении. Неврология, нейропсихиатрия, психосоматика. 2019;11(1):117-24. doi: 10.14412/2074-2711-2019-1-117-124
16. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of recognition and classification problems. Part 1: properties of compactness. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(2):274.
17. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of problems of recognition and classification. Part 2: density properties. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(3):483-96.
18. Torshin IYu. Optimal Dictionaries output information based on the criterion of Solvability and their applications in Bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013;23(2):319-27.
19. Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(2):184-99.
20. Pantazopoulos H, Berretta S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast. 2016;2016:9847696. doi: 10.1155/2016/9847696. Epub 2015 Dec 29.
21. Canning DR, Brelsford NR, Lovett NW. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell Dev Biol Anim. 2016 Jan;52(1):35-44. doi: 10.1007/s11626-015-9941-8.
22. Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol. 2015 Jul;269: 169-87. doi: 10.1016/j.expneurol.2015.04.006.
23. Karumbaiah L, Enam SF, Brown AC, et al. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjug Chem. 2015 Dec 16;26(12):2336-49. doi: 10.1021/acs.bioconjchem.5b00397. Epub 2015 Oct 20.
24. Djerbal L, Lortat-Jacob H, Kwok J. Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J. 2017 Jun;34(3):363-76. doi: 10.1007/s10719-017-9761-z. Epub 2017 Jan 18.
25. Rauvala H, Paveliev M, Kuja-Panula J, Kulesskaya N. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regen Res. 2017 May;12(5):687-691. doi: 10.4103/1673- 5374.206630.
26. Wu Y, Sheng W, Chen L, et al. Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell. 2004 May;15(5):2093-104. doi: 10.1091/mbc.e03-09-0667. Epub 2004 Feb 20.
27. Liu C, Fan L, Xing J, et al. Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Biomater Sci. 2019 Apr 23;7(5):1995-2008. doi: 10.1039/c8bm01363b.
28. Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj. 2017 Oct;1861(10):2420-2434. doi: 10.1016/j.bbagen.2017.06.010. Epub 2017 Jun 15.
29. Yutsudo N, Kitagawa H. Involvement of chondroitin 6-sulfation in temporal lobe epilepsy. Exp Neurol. 2015 Dec;274(Pt B): 126-33. doi: 10.1016/j.expneurol.2015.07.009. Epub 2015 Jul 29.
30. Shida M, Mikami T, Tamura JI, Kitagawa H. Chondroitin sulfate-D promotes neurite outgrowth by acting as an extracellular ligand for neuronal integrin alphaVbeta3. Biochim Biophys Acta Gen Subj. 2019 Sep;1863(9):1319-1331. doi: 10.1016/j.bbagen. 2019.06.004. Epub 2019 Jun 8.
31. Betancur MI, Mason HD, Alvarado-Velez M, et al. Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury. ACS Biomater Sci Eng. 2017 Mar 13;3(3):420-430. doi: 10.1021/acsbiomaterials.6b00805. Epub 2017 Feb 13.
32. Sobel RA, Ahmed AS. White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol. 2001 Dec;60(12): 1198-207. doi: 10.1093/jnen/60.12.1198.
33. Pantazopoulos H, Woo TU, Lim MP, et al. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry. 2010 Feb;67(2):155-66. doi: 10.1001/archgenpsychiatry.2009.196.
34. Hobohm C, Gunther A, Grosche J, et al. Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J Neurosci Res. 2005 May 15;80(4):539-48. doi: 10.1002/jnr.20459.
35. Miyata S, Kitagawa H. Chondroitin sulfate and neuronal disorders. Front Biosci (Landmark Ed). 2016 Jun 1;21:1330-40. doi: 10.2741/4460.
36. Zuo J, Neubauer D, Dyess K, et al. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp Neurol. 1998 Dec;154(2): 654-62. doi: 10.1006/exnr.1998.6951.
37. Koh CH, Pronin S, Hughes M. Chondroitinase ABC for neurological recovery after acute brain injury: systematic review and meta-analyses of preclinical studies. Brain Inj. 2018;32(6):715-729. doi: 10.1080/02699052.2018.1438665. Epub 2018 Feb 13.
38. Suzuki H, Ahuja CS, Salewski RP, et al. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury. PLoS One. 2017 Aug 3;12(8):e0182339. doi: 10.1371/ journal.pone.0182339. eCollection 2017.
39. Rolls A, Cahalon L, Bakalash S, et al. A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB J. 2006 Mar;20(3):547-9. doi: 10.1096/fj.05-4540fje. Epub 2006 Jan 5.
40. Chen XR, Liao SJ, Ye LX, et al. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats. Brain Res. 2014 Jan 16;1543:324-33. doi: 10.1016/j.brainres.2013.12.002. Epub 2013 Dec 8.
41. Martin-de-Saavedra MD, del Barrio L, Canas N, et al. Chondroitin sulfate reduces cell death of rat hippocampal slices subjected to oxygen and glucose deprivation by inhibiting p38, NFkappaB and iNOS. Neurochem Int. 2011 May;58(6):676-83. doi: 10.1016/j.neuint. 2011.02.006. Epub 2011 Feb 16.
42. Egea J, Garcia AG, Verges J, et al. Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis Cartilage. 2010 Jun;18 Suppl 1:S24-7. doi: 10.1016/j.joca.2010.01.016. Epub 2010 Apr 24.
43. Lin R, Rosahl TW, Whiting PJ, et al. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS One. 2011; 6(7):e21499. doi: 10.1371/journal.pone.0021499. Epub 2011 Jul 1.
44. Sato Y, Nakanishi K, Tokita Y, et al. A highly sulfated chondroitin sulfate preparation, CS-E, prevents excitatory amino acidinduced neuronal cell death. J Neurochem. 2008 Mar;104(6):1565-76. doi: 10.1111/j.1471-4159.2007.05107.x. Epub 2007 Nov 7.
45. Chen R, Gong P, Tao T, et al. O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity. Cell Mol Neurobiol. 2017 Nov;37(8):1465-1475. doi: 10.1007/s10571-017-0477-1. Epub 2017 Feb 25.
46. Fluri F, Grunstein D, Cam E, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats. Exp Neurol. 2015 Mar;265:142-51. doi: 10.1016/j.expneurol.2015.01.005. Epub 2015 Jan 24.
47. Hwang SY, Shin JH, Hwang JS, et al. Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia. 2010 Nov 15; 58(15):1881-92. doi: 10.1002/glia.21058.
48. Lee Y, Lee S, Park JW, et al. HypoxiaInduced Neuroinflammation and LearningMemory Impairments in Adult Zebrafish Are Suppressed by Glucosamine. Mol Neurobiol. 2018 Nov;55(11):8738-8753. doi: 10.1007/s12035-018-1017-9. Epub 2018 Mar 27.
49. Shijo T, Warita H, Suzuki N, et al. Aberrant astrocytic expression of chondroitin sulfate proteoglycan receptors in a rat model of amyotrophic lateral sclerosis. J Neurosci Res. 2018 Feb;96(2):222-233. doi: 10.1002/jnr.24127. Epub 2017 Jul 28.
50. Zhang Q, Li J, Liu C, et al. Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Abeta)-induced damage in vitro and in vivo. Neuroscience. 2015 Oct 1;305:169-82. doi: 10.1016/j.neuroscience.2015.08.002. Epub 2015 Aug 5.
51. Nemoto W, Yamada K, Nakagawasai O, et al. Effect of repeated oral administration of chondroitin sulfate on neuropathic pain induced by partial sciatic nerve ligation in mice. J Pharmacol Sci. 2018 Aug;137(4):403-406. doi: 10.1016/j.jphs.2018.03.003. Epub 2018 Mar 23.
52. Nemoto W, Yamada K, Ogata Y, et al. Chondroitin sulfate attenuates formalininduced persistent tactile allodynia. J Pharmacol Sci. 2016 Aug;131(4):275-8. doi: 10.1016/j.jphs.2016.07.009. Epub 2016 Aug 5.
53. Удовика МИ. Сравнительная эффективность инъекционных и пероральных симптоматических препаратов медленного действия в терапии первичного и посттравматического остеоартроза коленных суставов. Русский медицинский журнал. 2017;(7): 446-50.
54. Гутянский ОГ, Честнов АА. Опыт применения комплексного лечения дискогенных радикулопатий у спортсменов. Медицинский Совет. 2017;(11):28-34.
Рецензия
Для цитирования:
Громова ОА, Торшин ИЮ, Семенов ВА, Стаховская ЛИ, Рудаков КВ. О неврологических ролях хондроитина сульфата и глюкозамина сульфата: систематический анализ. Неврология, нейропсихиатрия, психосоматика. 2019;11(3):137-143. https://doi.org/10.14412/2074-2711-2019-3-137-143
For citation:
Gromova OA, Torshin IY, Semenov VA, Stakhovskaya LI, Rudakov KV. On the neurological roles of chondroitin sulfate and glucosamine sulfate: a systematic analysis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):137-143. (In Russ.) https://doi.org/10.14412/2074-2711-2019-3-137-143