Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Neuroimaging techniques for diagnosing Alzheimer’s disease and cerebrovascular diseases with cognitive impairment

https://doi.org/10.14412/2074-2711-2019-3S-18-25

Full Text:

Abstract

The paper provides data on current neuroimaging techniques for diagnosing Alzheimer’s disease and vascular cognitive impairment (CN). Structural neuroimaging methods can identify potentially treatable diseases leading to dementia and assess the magnitude and localization of atrophic and cerebrovascular changes in brain tissue. Particular attention is paid to the specific signs of Alzheimer’s disease: to the visual assessment of sections and the use of various rating scales (GCA, MTA, Koedam). Vascular changes that are most significant for the development of CI are considered. A new approach to diagnosing CI is presented, by taking into account the biomarkers of amyloidosis, tauopathy, neurodegeneration, and cerebrovascular damage. The results of the authors’ own investigations using positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy, and functional magnetic resonance imaging at rest allow these techniques to be recommended for the early diagnosis of CI of different genesis.

About the Authors

I. V. Litvinenko
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation
6, Academician Lebedev St., Saint Petersburg 194044


A. Yu. Emelin
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation
6, Academician Lebedev St., Saint Petersburg 194044


V. Yu. Lobzin
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation
6, Academician Lebedev St., Saint Petersburg 194044


K. A. Kolmakova
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation
6, Academician Lebedev St., Saint Petersburg 194044


References

1. World Health Organization (WHO). First WHO Ministerial Conference on Global Action against Dementia: Meeting Report. Geneva: World Health Organization; 2015. 78 p.

2. Grinberg L, Nitrini R, Suemoto CK, et al. Prevalence of dementia subtypes in a developing country: A clinicopathological study. Clinics (Sao Paulo). 2013;68(8):1140-5. doi: 10.6061/clinics/2013(08)13

3. Zaccai J, Ince P, Brayne C. Population-based neuropathological studies of dementia: design, methods and areas of investigation – a systematic review. BMC Neurol. 2006;6(2):1-16. doi: 10.1186/1471-2377-6-2

4. Odinak ММ, Emelin AYu, Lobzin VYu, et al. Current capacities for neuroimaging in the differential diagnosis of cognitive impairments. Nevrologiya,Neiropsikhiatriya, Psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2012;4(2S):51-5 (In Russ.). doi: 10.14412/2074-2711-2012-2509

5. Heiss WD, Rosenberg GA, Thiel A. Neuroimaging in vascular cognitive impairment: a state-of-the-art review. BMC Med. 2016;14(1):174. doi: 10.1186/s12916-016-0725-0

6. Staffaroni AM, Fanny MF, McDermott D. Neuroimaging in Dementia. Semin Neurol. 2017; 37(5):510-37. doi: 10.1055/s-0037-1608808

7. Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257-62. doi: 10.1016/j.jalz.2011.03.004

8. Emelin AYu, Lobzin VYu, Zheleznyak IS, Boikov IV. Alzheimer's Disease: Study Guide. St. Petersburg; 2016. 76 p. (In Russ.)].

9. Harper L, Barkhof F, Fox NC, et al. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatr. 2015;86(11):1225-33. doi: 10.1136/jnnp-2014-310090

10. Pasquier F, Leys D, Weerts JG, et al. Interand intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol. 1997;36(5):268-72. doi: 10.1159/000117270

11. Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967-72. doi: 10.1136/jnnp.55.10.967

12. Koedam E, Lehmann M, van der Flier W, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol. 2011;21(12):2618-25. doi: 10.1007/s00330-011-2205-4

13. Lobzin VYu, Kiselev VN, Fokin VA, et al. The use of magnetic resonance morphometry in the diagnosis of Alzheimer's disease and vascular cognitive impairment. Vestnik Rossiiskoi Voenno-Meditsinskoi Akademii. 2013;3(43): 48-54 (In Russ.).

14. Schmitter D, Roche A, Marechal B, et al. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage: Clinical. 2015;7:7-17. doi: 10.1016/j.nicl.2014.11.001

15. Kantarci K. Magnetic Resonance Spectroscopy in Common Dementias. Neuroimag Clin N Am. 2013;23:393-406. doi: 10.1016/j.nic.2012.10.004

16. Park M, Moon W. Structural MR Imaging in the diagnosis of Alzheimer's disease and other neurodegenerative dementia: Current Imaging Approach and Future Perspectives. Korean J Radiol. 2016;17(6):827-45. doi: 10.3348/kjr.2016.17.6.827

17. Del Sole A, Malaspina S, Magenta Biasina A. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. Funct Neurol. 2016;31(4): 205-15. doi: 10.11138/FNeur/2016.31.4.205

18. Herholz K. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52(8): 1218-26. doi: 10.2967/jnumed.111.090902

19. Jack CR, Bennett DA, Blennow K. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers. Dement. 2018;14(4):535-62. doi: 10.1016/j.jalz.2018.02.018

20. Emelin AYu, Odinak MM, Trufanov GE, et al. Possibilities of positron emission computed tomography in the differential diagnosis of dementia. Vestnik Rossiiskoi Voenno-Meditsinskoi Akademii. 2010; 4(32):46-51 (In Russ.).

21. Lobzin VYu. Comprehensive early diagnosis of cognitive impairment. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2015;115(11): 72-9 (In Russ.).

22. Emelin AYu. New criteria for diagnosing Alzheimer's disease. Nevrologiya, Neiropsikhiatriya, Psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2011;3(4):5-8 (In Russ.). doi: 10.14412/2074-2711-2011-337

23. Gietl AF, Warnock G, Riese F. Regional cerebral blood flow estimated by early PiB uptake is reduced in mild cognitive impairment and associated with age in an amyloid-dependent manner. Neurobiol Aging. 2015;36(4):1619- 28. doi: 10.1016/j.neurobiolaging.2014.12.036

24. Pontecorvo MJ, Devous MD, Navitsky M. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140(3):748-63. doi: 10.1093/brain/aww334

25. Prvulovic D, Hampel H. Amyloid β (Aβ) and phosphor-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):367-74. doi: 10.1515/CCLM.2011.087

26. Rosenberg GA, Wallin A, Wardlaw JM, et al. Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab. 2016;36(1):6-25. doi: 10.1038/jcbfm.2015.172

27. Fazekas F, Chawluk J, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351-6. doi: 10.2214/ajr.149.2.351

28. Wardlaw JM, Smith EE, Biessels GE. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration: a united approach. Lancet Neurol. 2013;12(8):822-38. doi: 10.1016/S1474-4422(13)70124-8

29. Ramirez J, Berezuk C, McNeely AA. Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer’s disease patients and normal elderly from the Sunnybrook Dementia Study. J Alzheimers Dis. 2015;43(2): 415-24. doi: 10.3233/JAD-132528

30. Adams HH, Hilal S, Schwingenschuh P, et al. A priori collaboration in population imaging: The Uniform Neuro-Imaging of VirchowRobin Spaces Enlargement consortium. Alzheimers Dement (Amst). 2015;1(4):513-20. doi: 10.1016/j.dadm.2015.10.004

31. Kalimo H, Ruchoux M-M, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12(3):371-84. doi: 10.1111/j.1750-3639.2002.tb00451.x

32. Lee DY, Fletcher E, Martinez O, et al. Regional pattern of white matter microstructural changes in normal aging, MCI, and AD. Neurology. 2009;73(21):1722-8. doi: 10.1212/WNL.0b013e3181c33afb


For citation:


Litvinenko I.V., Emelin A.Y., Lobzin V.Y., Kolmakova K.A. Neuroimaging techniques for diagnosing Alzheimer’s disease and cerebrovascular diseases with cognitive impairment. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3S):18-25. (In Russ.) https://doi.org/10.14412/2074-2711-2019-3S-18-25

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)