Neurology, Neuropsychiatry, Psychosomatics

Advanced search

, , ,

Full Text:

About the Authors

Russian Federation

Russian Federation

Russian Federation

Russian Federation


1. Koikkalainen J., Rhodius-Meester H., Tolonen A., Barkhof F., Tijms B., Lemstra A.W. et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage Clin 2016; 11: 435–49.

2. Tolonen A., Rhodius-Meester H.F.M., Bruun M., Koikkalainen J., Barkhof F., Lemstra A.W. et al. Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier. Front Aging Neurosci. 2018; 10:111.

3. Wang S.H., Phillips P., Sui Y., Liu B., Yang M., Cheng H. Classification of Alzheimer's Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling. J Med Syst. 2018 26;42(5):85. doi: 10.1007/s10916-018-0932-7.

4. Wong S.C., Gatt A., Stamatescu V., McDonnell M. D. Understanding data augmentation for classification: when to warp? in International Conference on Digital Image Computing: Techniques and Applications (DICTA) (Gold Coast, QLD: 2016; 1–6. 21

5. Bilello M., Arkuszewski M., Nucifora P., Nasrallah I., Melhem E.R., Cirillo L., Krejza J. Multiple sclerosis: identification of temporal changes in brain lesions with computer-assisted detection software. Neuroradiol J. 2013; 26 (2):143-50.

6. Wang S., Tang C., Sun J., Yang J., Huang C., Phillips P., Zhang Y. Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front Neurosci. 2018; 12: 818 doi: 10.3389/fnins.2018.00818.

7. Zhang Y-D., Pan C., Sun J., Tang C. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 2018; 28:1–10. DOI: 10.1016/j.jocs.2018.07.003.

8. Liu A., Hahn J.S., Heldt G.P., Coen R.W. Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol.1992; 82(1):30-7.

9. Altunay S., Telatar Z., Erogul O. Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl. 2010; 37 (8):5661–5665.

10. Tzallas A.T., Tsipouras M.G., Fotiadis D.I. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed. 2009; 13(5):703–710.

11. Mormann F., Kreuz T., Rieke C., Andrzejak R.G., Kraskov A., David P. et al. On the predictability of epileptic seizures. lin Neurophysiol 2005; 116 (3):569– 587.

12. Zandi A.S., Dumont G.A., Javidan M., Tafreshi R. An entropy-based approach to predict seizures in temporal lobe epilepsy using scalp EEG. Conf Proc IEEE Eng Med Biol Soc 2009:228–231.

13. Giannakakis G., Sakkalis V., Pediaditis M.,Tsiknakis M. Methods for Seizure Detection and Prediction: An Overview Modern Electroencephalographic Assessment Techniques. Neuromethods 2014; vol. 91, 131-157,

14. Ulate-Campos A., Coughlin F., Gaínza-Lein M., Fernández I.S., Pearl P.L., Loddenkemper T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 2016; vol. 40, 88-101. 22

15. Cook M.J., O’Brien T.J., Berkovic S.F., Murphy M., Morokoff A., Fabinyi G. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 2013; 12: 563 – 71.

16. Stacey W.C. Seizure Prediction Is Possible–Now Let's Make It Practical. EBioMedicine. 2018 Jan; 27: 3–4. doi: 10.1016/j.ebiom.2018.01.006.

17. Kiral-Kornek I., Roy S., Nurse E., Mashford B., Karoly P.J., Carroll T. et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine. 2018; 27:103–111.

18. Josefiok M., Krahn T., Sauer J. A Survey on Expert Systems for Diagnosis Support in the Field of Neurology,” in Intelligent DecisionTechnologies - Proceedings of the 4th International Conference on Intelligent Decision Technologies (IDT’2015), R. J. Howlett and L. C.Jain, Eds. Springer, 2015, 1- 10.

19. Bilgi N.B., Wali G.M., Mense A., Takkekar P., Yaddi B., Patil S.. Symptomatic Decision Support System for Neurological Disorders. BRAIN 2017; vol 8, is. 4: 5-16.

20. Vandewiele G.. Enhancing white-box machine learning processes by incorporating semantic background knowledge. The Extended Semantic Web Conference 2017: 267-78.

21. Rammazzo L., Kikidis D., Anwer A., Macdonald N., Kyrodimos E., Maurer C. et al.. EMBalance - validation of a decision support system in the early diagnostic evaluation and management plan formulation of balance disorders in primary care: study protocol of a feasibility randomised controlled trial. Trials. 2016; 17(1): 435. Published online 2016 Sep 5. doi: 10.1186/s13063-016-1568- x. 23

22. Kondziolka D., Cooper B.T., Lunsford L.D., Silverman J. Development, implementation, and use of a local and global clinical registry for neurosurgery. Big Data 2015; 3(2):80-9

23. Rodriguez-de-Pablo C.1., Perry J.C., Cavallaro F.I., Zabaleta H., Keller T. Development of computer games for assessment and training in post-stroke arm telerehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2012:4571-4. doi: 10.1109/EMBC.2012.6346984.

24. Gal N., Andrei D., Nemeş D.I., Nădăşan E., Stoicu-Tivadar V. A Kinect based intelligent e-rehabilitation system in physical therapy.. Health Technol Inform. 2015; 210:489-93.

25. Hoda M., HodaY., Alamri A., Hafidh B., Saddik A.E. A Novel Study on Natural Robotic Rehabilitation Exergames Using the Unaffected Arm of Stroke Patients. International Journal of Distributed Sensor Networks. Vol. 2015; Article ID 590584, 8 pages

26. Keidel M, Vauth F, Richter J, Hoffmann B, Soda H, Griewing B, Scibor M. Home-based telerehabilitation after stroke. Nervenarzt. 2017;88(2):113-119. doi: 10.1007/s00115-016-0275-x.

27. Rizzo A.S., Shilling R. Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD. Eur J Psychotraumatol. 2017; 8(sup5): 1414560. doi: 10.1080/20008198.2017.1414560.

28. Rothbaum B. O., Hodges L., Ready D., Graap K., Alarcon R. (2001). Virtual reality exposure therapy for Vietnam veterans with posttraumatic stress disorder. The Journal of Clinical Psychiatry, 2001; 62, 617–22.

29. Botella C., Serrano B., Baños R. M., Garcia-Palacios A.Virtual reality exposure-based therapy for the treatment of post-traumatic stress disorder: a review of its efficacy, the adequacy of the treatment protocol, and its acceptability. Neuropsychiatr Dis Treat. 2015; 11: 2533–45.

30. Tjernstro F., Zur O., Jahn K. Current concepts and future approaches to vestibular rehabilitation. J Neurol 2016; 263 (Suppl 1): 65–70. 24

31. JASON: Artificial Intelligence for Health Care 2017.

Views: 190

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)