Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus

https://doi.org/10.14412/2074-2711-2019-1-53-58

Full Text:

Abstract

The diagnosis of idiopathic normal pressure hydrocephalus (iNPH) presents difficulties because of the same symptomatology in neurodegenerative diseases. The data of brain magnetic resonance imaging (MRI) and invasive techniques (tap test, external lumbar drainage, and infusion test) not always allow an accurate diagnosis of iNPH, especially when patients have comorbidity. This increases the role of cerebrospinal fluid (CSF) biomarkers in the differential diagnosis of iNPH and comorbidities at early stages.

Objective: to analyze the data available in the literature on current ideas about CSF biomarkers and their role in the differential diagnosis of iNPH and neurodegenerative diseases in the brain.

Material and methods. The literature data were sought in the internet resource PubMed by the keywords: normal pressure hydrocephalus, CSF biomarkers, neurodegeneration, Alzheimer's disease (AD), beta-amyloid protein, and tau protein. Fifty-three communications published in 1965 to 2018 were reviewed.

Results and discussion. In accordance with the data available in the literature, the most informative CSF biomarkers for the differential diagnosis of iNPH are beta-amyloid (Aβ) proteins β42, Aβ-40, Aβ -38, sAPPβ, sAPPβ, and t-tau and p-tau. The study of CSF biomarkers opens up prospects not only for the detection of iNPH, but also for its differential diagnosis with neurodegenerative diseases, primarily with AD. The detection of biomarkers can be used in addition to brain MRI and invasive techniques to improve the accuracy of diagnosis, as well as to predict the efficiency of bypass surgery, but provided that they are comprehensively assessed.

Conclusion. The analysis of the levels of specific CSF proteins holds promise for the differential diagnosis of iNPH.

About the Authors

B. G. Adleyba
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

6, Academician Lebedev St., Saint Petersburg 194044



G. V. Gavrilov
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

6, Academician Lebedev St., Saint Petersburg 194044



A. V. Stanishevsky
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

Artem Vadimovich Stanishevsky

6, Academician Lebedev St., Saint Petersburg 194044



B. V. Gaydar
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

6, Academician Lebedev St., Saint Petersburg 194044



D. V. Svistov
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

6, Academician Lebedev St., Saint Petersburg 194044



V. Yu. Lobzin
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

6, Academician Lebedev St., Saint Petersburg 194044



K. A. Kolmakova
S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
Russian Federation

6, Academician Lebedev St., Saint Petersburg 194044



References

1. Adams RD, Fisher CM, Hakim S, et al. Symptomatic occult hydrocephalus with «normal» cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med. 1965 Jul 15;273:117-26.

2. Tisell M, Hö glund M, Wikkels∅ C. National and regional incidence of surgery for adult hydrocephalus in Sweden. Acta Neurol Scand. 2005 Aug;112(2):72-5.

3. Marmarou A, Young HF, Aygok GA. Estimated incidence of normal pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. Neurosurg Focus. 2007 Apr 15;22(4):E1.

4. Hiraoka K, Meguro K, Mori E. Prevalence of idiopathic normal-pressure hydrocephalus in the elderly population of a Japanese rural community. Neurol Med Chir (Tokyo). 2008 May; 48(5):197-99; discussion 199-200.

5. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. ActaNeurol Scand. 2008 Jul;118(1):48-53. doi: 10.1111/j.1600-0404.2007.00982.x. Epub 2008 Jan 16.

6. Tanaka N, Yamaguchi S, Ishikawa H, et al. Prevalence of possible idiopathic normal-pressure hydrocephalus in Japan: the Osaki-Tajiri project. Neuroepidemiology. 2009;32(3):171-5. doi: 10.1159/000186501. Epub 2008 Dec 19.

7. Iseki C, Kawanami T, Nagasawa H, et al. Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) in the elderly: a prospective study in a Japanese population. J Neurol Sci. 2009 Feb 15;277(1-2):54-7. doi: 10.1016/j.jns.2008.10.004. Epub 2008 Nov 5.

8. Lemcke J, Stengel D, Stockhammer F, et al. Nationwide Incidence of Normal Pressure Hydrocephalus (NPH) Assessed by Insurance Claim Data in Germany. Open Neurol J. 2016 May 26;10:15-24. doi: 10.2174/1874205X01610010015. eCollection 2016.

9. Zhang X, Medow JE, Iskandar BJ, et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas. 2017 Jul 24;38(8):R143-R182. doi: 10.1088/1361-6579/aa7256.

10. Greitz D. The hydrodynamic hypothesis versus the bulk fl ow hypothesis. Neurosurg Rev. 2004 Oct;27(4):299-300. Epub 2004 Jul 23.

11. Kazui H, Kanemoto H, Yoshiyama K, et al. Association between high biomarker probability of Alzheimer’s disease and improvement of clinical outcomes after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci. 2016 Oct 15;369:236-241. doi: 10.1016/j.jns.2016.08.040. Epub 2016 Aug 19.

12. Jaraj D, Rabiei K, Marlow T, et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014 Apr 22;82(16): 1449-54. doi: 10.1212/WNL.0000000000000342. Epub 2014 Mar 28.

13. Ghosh S, Lippa C. Diagnosis and prognosis in idiopathic normal pressure hydrocephalus. Am J Alzheimers Dis Other Demen. 2014 Nov; 29(7):583-9. doi: 10.1177/1533317514523485. Epub 2014 Feb 18.

14. Kameda M, Yamada S, Atsuchi M, et al; SINPHONI and SINPHONI-2 Investigators. Cost-effectiveness analysis of shunt surgery for idiopathic normal pressure hydrocephalus based on the SINPHONI and SINPHONI-2 trials. ActaNeurochir (Wien). 2017 Jun;159(6):995- 1003. doi: 10.1007/s00701-017-3115-2. Epub 2017 Mar 1.

15. Mihalj M, Dolic K, Kolic K, Ledenko V. CSF tap test—obsolete or appropriate test for predicting shunt responsiveness? A systemic review. J Neurol Sci. 2016 Mar 15;362:78-84. doi: 10.1016/j.jns.2016.01.028. Epub 2016 Jan 22.

16. Jeppsson A, Zetterberg H, Blennow K, Wikkels∅ C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013 Apr 9;80(15): 1385-92. doi: 10.1212/WNL.0b013e31828c2fda. Epub 2013 Mar 13.

17. Miyajima M, Nakajima M, Ogino I, et al. Soluble amyloid precursor protein α in the cerebrospinal fluid as a diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur J Neurol. 2013 Feb;20(2): 236-42. doi: 10.1111/j.1468-1331.2012.03781.x. Epub 2012 Jun 4.

18. Ray B, Reyes PF, Lahiri DK. Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Aβ) peptide and phospho-tau. J Psychiatr Res. 2011 Apr;45(4):539-47. doi: 10.1016/j.jpsychires.2010.07.011. Epub 2010 Sep 9.

19. Agren-Wilsson A, Lekman A, Sjë berg W, et al. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007 Nov;116(5):333-9. doi: 10.1111/j.1600-0404.2007.00890.x

20. Magdalinou N, Lees AJ, Zetterberg H. Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. J Neurol Neurosurg Psychiatry. 2014 Oct;85(10): 1065-75. doi: 10.1136/jnnp-2013-307539.

21. Tullberg M, Blennow K, Mansson JE, et al. Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur J Neurol. 2007 Mar; 14(3):248-54. doi: 10.1111/j.1468-1331.2006.01553.x

22. Tullberg M, Blennow K, Mansson JE, et al. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cerebrospinal Fluid Res. 2008 Apr 25;5:9. doi: 10.1186/1743-8454-5-9.

23. Pyykkö OT, Lumela M, Rummukainen J, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One. 2014 Mar 17;9(3): e91974. doi: 10.1371/journal.pone.0091974. eCollection 2014.

24. Nakajima M, Miyajima M, Ogino I, et al. Leucine-rich α-2-glycoprotein is a marker for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2011 Jun;153(6):1339-46; discussion 1346. doi: 10.1007/s00701-011-0963-z.

25. Li X, Miyajima M, Mineki R, et al. Analysis of potential diagnostic biomarkers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics. Acta Neurochir (Wien). 2006 Aug; 148(8):859-64. doi: 10.1007/s00701-006-0787-4.

26. Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984 May 16;120(3):885-90.

27. Lins H, Wichart I, Bancher C, et al. Immunoreactivities of amyloid beta peptide (1–42) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. J Neural Transm (Vienna). 2004 Mar;111(3):273-80. Epub 2003 Dec 3.

28. Cole SL, Vassar R. The Alzheimer's disease β-secretase enzyme, BACE1. Mol Neurodegener. 2007 Nov 15;2:22.

29. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010 Mar;6(3):131-44. doi: 10.1038/nrneurol.2010.4.

30. Hanger DP, Seereeram A, Noble W. Mediators of tau phosphorylation in the pathogenesis of Alzheimer's disease. Expert Rev Neurother. 2009 Nov;9(11):1647-66. doi: 10.1586/ern.09.104.

31. Picascia M, Zangaglia R, Bernini S, et al. A review of cognitive impairment and differential diagnosis in idiopathic normal pressure hydrocephalus. Funct Neurol. 2015 Oct-Dec;30(4): 217-28.

32. Jingami N, Asada-Utsugi M, Uemura K, et al. Idiopathic normal pressure hydrocephalus has a different cerebrospinal fluid biomarker profile from Alzheimer's disease. J Alzheimers Dis. 2015;45(1):109-15. doi: 10.3233/JAD-142622.

33. Schirinzi T, Sancesario GM, Ialongo C, et al. A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol. 2015 Apr 23; 6:86. doi: 10.3389/fneur.2015.00086. eCollection 2015.

34. Bech RA, Waldemar G, Gjerris F, et al. Shunting effects in patients with idiopathic normal pressure hydrocephalus; correlation with cerebral and leptomeningeal biopsy findings. ActaNeurochir (Wien). 1999;141(6):633-9.

35. Cabral D, Beach TG, Vedders L, et al. Frequency of Alzheimer's disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimers Dement. 2011 Sep; 7(5):509-13. doi: 10.1016/j.jalz.2010.12.008. Epub 2011 Jul 1.

36. Hamilton R, Patel S, Lee EB, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol. 2010 Oct;68(4):535-40. doi: 10.1002/ana.22015.

37. Bech-Azeddine R, H∅gh P, Juhler M, et al. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J NeurolNeurosurg Psychiatry. 2007 Feb;78(2):157-61. Epub 2006 Sep 29.

38. Schirinzi T, Sancesario GM, Ialongo C, et al. A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol. 2015 Apr 23; 6:86. doi: 10.3389/fneur.2015.00086. eCollection 2015.

39. Hamlat A, Sid-Ahmed S, Adn M, et al. Idiopathic normal pressure hydrocephalus: theoretical concept of a spinal etiology. Med Hypotheses. 2006;67(1):110-4. Epub 2006 Mar 7.

40. Schirinzi T, Sancesario GM, Di Lazzaro G, et al. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm (Vienna). 2018 Apr; 125(4): 673-679. doi: 10.1007/s00702-018-1842-z.

41. Sosvorova L, Vcelak J, Mohapl M, et al. Selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in normal pressure hydrocephalus. Neuro Endocrinol Lett. 2014;35(7): 586-93.

42. Murakami Y, Matsumoto Y, Hoshi K, et al. Rapid increase of «brain-type» transferrin in cerebrospinal fluid after shunt surgery for idiopathicnormal pressure hydrocephalus: a prognosis marker for cognitive recovery. J Biochem. 2018 Sep 1;164(3):205-213. doi: 10.1093/jb/mvy043.

43. Luikku AJ, Hall A, Nerg O, et al. Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. ActaNeurochir (Wien). 2016 Dec;158(12):2311- 2319. Epub 2016 Oct 14.

44. Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal Fluid Biomarkers as Predictors of Shunt Response in Idiopathic Normal Pressure Hydrocephalus: A Systematic Review. Can J Neurol Sci. 2018 Jan;45(1):3-10. doi: 10.1017/cjn.2017.251. Epub 2017 Nov 10.


For citation:


Adleyba B.G., Gavrilov G.V., Stanishevsky A.V., Gaydar B.V., Svistov D.V., Lobzin V.Y., Kolmakova K.A. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(1):53-58. (In Russ.) https://doi.org/10.14412/2074-2711-2019-1-53-58

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)