Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

The brain’sglymphatic system:physiological anatomy and clinical perspectives

https://doi.org/10.14412/2074-2711-2018-4-94-100

Full Text:

Abstract

The recently discovered glymphatic system (GS) ensures the efficient clearance of interstitial fluid and soluble compounds from the central nervous system into cerebrospinal fluid (CSF), which compensates for the lack of conventional lymphatic vessels in the brain parenchyma. This unique anatomical and physiological phenomenon had been unknown until 2012. GS lacks inherent proper vessels Р the current of CSF and interstitial fluid is carried out directly inside the arterial walls (the perivascular pathway) or near the walls of the cerebral arteries and veins (the paravascular pathway). Current biorheological technologies could establish a special role of aquaporin-4 in the filtration of CSF and interstitial fluid. The close link between GS and the CSF circulatory system allows the established views on fluid dynamics within the brain to be reconsidered. The discovery of GS can contribute to our understanding of the pathogenesis of increased intracranial pressure and neurodegenerative diseases, as well as to the elaboration of new therapeutic approaches to their treatment.

About the Authors

V. N. Nikolenko
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Department of Human Anatomy and; Department of Nervous System Diseases and Neurosurgery, Faculty of General Medicine.

8, Trubetskaya St., Build. 2, Moscow 119991; 11, Rossolimo St., Build. 1, Moscow 119021



M. V. Oganesyan
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Department of Human Anatomy and.

8, Trubetskaya St., Build. 2, Moscow 119991



N. N. Yakhno
M.V. Lomonosov Moscow State University
Russian Federation

Department of Normal and Topographic Anatomy.

1, Leninskie Gory, Moscow 119234



E. A. Orlov
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Department of Human Anatomy and; Department of Nervous System Diseases and Neurosurgery, Faculty of General Medicine.

8, Trubetskaya St., Build. 2, Moscow 119991



E. E. Porubayeva
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Department of Human Anatomy and.

8, Trubetskaya St., Build. 2, Moscow 119991



E. Yu. Popova
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Ekaterina Yuryevna Popova - Department of Human Anatomy and; Department of Nervous System Diseases and Neurosurgery, Faculty of General Medicine.

8, Trubetskaya St., Build. 2, Moscow 119991



References

1. Guyton AC, Hall JE. Textbook of Medical Physiology. 13 th ed. Elsevier Science; 2015

2. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatics. Nature. 2015 Jul 16;523(7560):337-41. doi: 10.1038/nature14432. Epub 2015 Jun 1.

3. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. JExp Med. 2015 Jun 29;212(7):991-9. doi: 10.1084/jem.20142290. Epub 2015 Jun 15.

4. Semyachkina-Glushkovskaya OV. Lymphatic system in brain tunics: new discoveries in neurophysiology. Sibirskoe Meditsinskoe Obozrenie. 2017;(6):39—50. (In Russ.). doi: 10.20333/2500136-2017-6-39-50

5. Nikityuk DB, Nikolenko VN, Chava SV. Anatomiya cheloveka: uchebnik v dvukh tomakh [Human anatomy: textbook in two volumes]. Moscow: GEOTAR-Media; 2012.

6. Dobrovol'skii GF. Ul'trastruktura obolochek i paravazal'nykh struktur arterii golovnogo mozga [Ultrastructure of membranes and paravasal structures of cerebral arteries]. Moscow: Sputnik+; 2014.

7. Bakker EN, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cell Mol Neurobiol. 2016 Mar;36(2):181-94. doi: 10.1007/s10571-015-0273-8. Epub 2016 Mar 18.

8. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990 Jun;170:111-23.

9. Bacyinski A, Xu M, Wang W, Hu J. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy. Front Neuroanat. 2017 Nov 7;11:101. doi: 10.3389/fnana.2017.00101.eCollection2017.

10. Iliff JJ, Wang M, Liao Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid p. Sci Transl Med. 2012 Aug 15; 4(147):147ra111. doi: 10.1126/scitranslmed.3003748.

11. Nakada T, Kwee I, Igarashi H, Suzuki Y. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci. 2017 Aug 18;18(8). pii: E1798. doi: 10.3390/ijms18081798.

12. Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist. 2018 May 1:1073858418775027. doi: 10.1177/1073858418775027. [Epub ahead of print]

13. Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a 'Paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985 Feb 4;326(1):47-63. doi: 10.1073/pnas.1706942114

14. Thrane VR, Thrane AS, Plog BA, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013;3:2582. doi: 10.1038/srep02582.

15. Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008 Apr;34(2):131-44. doi: 10.1111/j.1365-2990.2007.00926.x. Epub 2008 Jan 16.

16. Abbott NJ, Pizzo ME, Preston JE, et al. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol. 2018 Mar;135(3):387-407. doi: 10.1007/s00401-018-1812-4. Epub 2018 Feb 10.

17. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF. Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984 Jun;246(6 Pt 2):F835-44.

18. Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009 Jan;117(1):1-14. doi: 10.1007/s00401-008-0457-0. Epub 2008 Nov 11.

19. Arbel-Ornath M, Hudry E, Eikermann-Haerter K, et al. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. Acta Neuropathol. 2013 Sep;126(3):353-64. doi: 10.1007/s00401-013-1145-2. Epub 2013 Jul 2.

20. Morris AW, Sharp MM, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016 May;131(5): 725-36. doi: 10.1007/s00401-016-1555-z. Epub 2016 Mar 14.

21. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014 Dec 2;11(1):26. doi: 10.1186/2045-8118-11-26.eCollection 2014.

22. Bedussi B, Van der Wel NN, De Vos J, et al. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: A single compartment with preferential pathways. J Cereb Blood Flow Metab. 2017 Apr;37(4):1374-1385. doi: 10.1177/0271678X16655550. Epub 2016 Jan 1.

23. Bower NI, Hogan BM. Brain drains: new insights into brain clearance pathways from lymphatic biology. J Mol Med (Berl). 2018 May; 96(5):383-390. doi: 10.1007/s00109-018-1634-9. Epub 2018 Apr 2.

24. Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol. 2017 Feb;18(2):123-131. doi: 10.1038/ni.3666. Epub 2017 Jan 16.

25. Nicholson C, Hrabetova S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys J. 2017 Nov 21;113(10): 2133-2142. doi: 10.1016/j.bpj.2017.06.052. Epub 2017 Jul 26.

26. Liem T. Update zur Drainage des Gehirns und osteopathische Behandlungsansa tze. Osteopat Med. 2017;18(3):19-25. https://doi.org/10.1016/S1615-9071(17)30080-1

27. Liem T. Osteopathic treatment of the dura. In: Liem T, Tozzi P, Chila A, editors. Fascia in the osteopathic field. Edinburgh: Handspring; 2017.598p.

28. Liem T. Treatment Principles. In: Liem T, Heede P, editors. Foundations of morphody-namics in osteopathy. Edingburgh: Handspring; 2017. 720 p.

29. Liem T. Update zur Liquorforschung und Drainage des Gehirns. Osteopat Med. 2017; 18(2):22-7. doi: 10.1016/S1615-9071(17)30049-7

30. Ramanan VK, Risacher SL, Nho K, et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP. Brain. 2015 Oct;138(Pt 10):3076-88. doi: 10.1093/brain/awv231. Epub 2015 Aug 11.

31. Kozin SA, Pol'shakov VI, Mezentsev YuV, et al. Enalaprilat Inhibits Zinc-Dependent Oligomerization of Metal-Binding Domain of Amyloid-beta Isoforms and Protects Human Neuroblastoma Cells from Toxic Action of these Isoforms. Molekulyarnaya biologiya. 2018;52(4):683-91 (In Russ.).

32. Breymann CS. Die lymphatischen Abflusswege von Gehirn und Hypophyse im Mausmodell Inaugural (Dissertation zur Erlangung des Doktorgrades fu r Zahnheilkunde der Medizinischen FakultKt der Georg-August-Universitat zu Gottingen). 2016.

33. Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol. 2018 Jun; 21(3):137-151. doi: 10.1016/j.cjtee.2018.02.003. Epub 2018 Apr 24.

34. Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: A review of epidemiology, pathology and neuroimaging techniques. JAlzheimers Dis Parkinsonism. 2014 Jan 31;4. pii: 137.

35. Sullan MJ, Asken BM, Jaffee MS, et al. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Neurosci Biobehav Rev. 2018 Jan;84:316-324. doi: 10.1016/j.neu-biorev.2017.08.016. Epub 2017 Aug 30.

36. Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016 Oct 15;272:38-49. doi: 10.1016/j.jneumeth.2016.06.018. Epub 2016 Jul 2.

37. Engelhardt B, Carare RO, Bechmann I, et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016 Sep;132(3):317-38. doi: 10.1007/s00401-016-1606-5. Epub 2016 Aug 13.

38. Gakuba C, Gaberel T, Goursaud S, et al. General Anesthesia Inhibits the Activity of the “Glymphatic System”. Theranostics. 2018 Jan 1; 8(3):710-722. doi: 10.7150/thno.19154.eCollection 2018.

39. Shokri-Kojori E, Wang GJ, Wiers CE, et al. P-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci US A. 2018 Apr 24;115(17): 4483-4488. doi: 10.1073/pnas.1721694115. Epub 2018 Apr 9.

40. Boespflug EL, Iliff JJ. The Emerging Relationship Between Interstitial Fluid-Cerebrospinal Fluid Exchange, Amyloid-p, and Sleep. Biol Psychiatry. 2018 Feb 15;83(4): 328-336. doi: 10.1016/j.biopsych.2017.11.031. Epub 2017 Dec 7.

41. Brzecka A, Leszek J, Ashraf GM, Ejma M, Avila-Rodriguez MF, Yarla NS, Tarasov VV, Chubarev VN, Samsonova AN, Barreto GE, Aliev G. Sleep Disorders Associated With Alzheimer's Disease: A Perspective. Front Neurosci. 2018 May 31;12:330. doi: 10.3389/fnins.2018.00330.eCollection2018.

42. Xie L, Kang H, Xu Q, et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.

43. Linninger AA, Xu C, Tangen K, Hartung G. Starling forces drive intracranial water exchange during normal and pathological states. Croat Med J. 2017;58(6):384-94. doi: 10.3325/cmj.2017.58.384

44. Roth C, Stitz H, Roth C, et al. Craniocervical manual lymphatic drainage and its impact on intracranial pressure — a pilot study. Eur J Neurol. 2016 Sep;23(9):1441-6. doi: 10.1111/ene.13055. Epub 2016 May 30.

45. Chikly B, Chikly A. Verbindung von Gehirn und Lymphsystem: neue Erkenntnisse und ihre Bedeutung fu r die Therapie. Osteopat Med. 2016; 17(4):4-9. doi: 10.1016/s1615-9071(16)30080-6

46. Benveniste H, Liu X, Koundal S, et al. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology. 2018 Jul 11:1-14. doi: 10.1159/000490349. [Epub ahead of print]

47. Eide PK, Eidsvaag VA, Nagelhus EA, Hansson HA. Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Res. 2016 Aug 1; 1644:161-75. doi: 10.1016/j.brainres.2016.05.024. Epub 2016 May 14.

48. Wostyn P, Van Dam D, De Deyn PP. intracranial pressure and glaucoma: is there a new therapeutic perspective on the horizon? Med Hypotheses. 2018 Sep;118:98-102. doi: 10.1016/j.mehy.2018.06.026. Epub 2018 Jun 28.

49. Petzold A. Retinal glymphatic system: an explanation for transient retinal layer volume changes? Brain. 2016 Nov 1;139(11):2816-2819. doi: 10.1093/brain/aww239.

50. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, Otterseni OP, Nagelhusj EA, Mardal K-A, Pettersenj KH. interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9894-9899. doi: 10.1073/pnas.1706942114. Epub 2017 Aug 28.


For citation:


Nikolenko V.N., Oganesyan M.V., Yakhno N.N., Orlov E.A., Porubayeva E.E., Popova E.Y. The brain’sglymphatic system:physiological anatomy and clinical perspectives. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4):94-100. (In Russ.) https://doi.org/10.14412/2074-2711-2018-4-94-100

Views: 452


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)