Visual evoked potentials in examining the visual analyzer in patients with multiple sclerosis
Abstract
Objective: to study the neurophysiological features of the visual analyzer in patients with multiple sclerosis (MS) to optimize the early diagnosis of the disease.
Patients and methods. Seventy-nine patients (57 women and 22 men, mean age 34.31±4.7 years) diagnosed as having MS were examined. The mean duration of the disease with consideration for its clinical form was 3.3±2.2 years in relapsing-remitting MS (RRMS), 9.1±4.2 years in secondary progressive MS (SPMS), and 2.7±1.9 years in primary progressive MS (PPMS).
Results and discussion. The neurophysiological examination indicated that demyelination processes in MS proceeded differently in response to dissimilar lights in the structures of the visual analyzer. The most marked significant (p<0.01) deviations in the values of visual evoked potentials (VEPs) to the black-white tessellated pattern (TP) were observed in the patients with SPMS and in those with PPMS. The latency of the P100 wave increased dramatically and differed significantly (p<0.001) from those in the control group (127.09 msec for RRMS, 128.3 msec for SPMS, 124.5 msec for PPMS, and 106.1 msec in the control). Amplitude analysis could reveal a significant decrease in the force of a N75–N100 wave response to the black-white stimulus in all the clinical groups, averaging 3.3 μW (8.5 μW in the control). The latency of the P100 wave to the red-yellow TP increased considerably and differed significantly (p<0.001) from that in the control group, by comprising
147.29±1.19 msec for RRMS, 150.23±1.49 msec for SPMS, and 144.38±2.11 msec for PPMS. There were the same changes that to the greenblack TP. Examination of 25 patients with MS established higher levels of IgG antibodies against myelin basic protein. The most significant latency increase occurs in response to the color spectrum of visible light against the black-white background, which may serve as an early diagnostic criterion for MS. These changes lead to a sharp decrease in a cortical feedback. The use of the color pattern will largely contribute to the improved early diagnosis of MS.
About the Authors
S. M. KarpovRussian Federation
Stavropol, Russia 310, Mir St., Stavropol 355017
Z. B. Pazhigova
Russian Federation
Stavropol, Russia 310, Mir St., Stavropol 355017
E. N. Karpova
Russian Federation
Stavropol, Russia 310, Mir St., Stavropol 355017
References
1. Пажигова ЗБ, Карпов СМ, Шевченко ПП, Бурнусус НИ. Распространенность рассеянного склероза в мире (обзорная статья). Международный журнал экспериментального образования. 2014;(1–2):78–82. [Pazhigova ZB, Karpov SM, Shevchenko PP, Burnusus NI. Prevalence of multiple sclerosis in the world (review). Mezhdunarodnyi zhurnal eksperimental'nogo obrazovaniya. 2014;(1–2):78–82. (In Russ.)]
2. Зихова АР, Березгова ЛМ, Тлапшокова ЛБ, Бойко АН. Эпидемиологические характеристики рассеянного склероза в Кабардино-Балкарской республике. Журнал неврологии и психиатрии им. С.С. Корсакова. 2013;113(10–2):5–7. [Zikhova AR, Berezgova LM, Tlapshokova LB, Boiko AN. Epidemiological characteristics of multiple sclerosis in the Kabardino-Balkaria Republic. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2013;113(10–2):5–7. (In Russ.)]
3. Алифирова ВМ, Титова МА. Клиническая характеристика рассеянного склероза в Томской области. Неврология, нейропсихиатрия, психосоматика. 2012;(2):50–1. [Alifirova VM, Titova MA. Clinical characteristics of multiple sclerosis in the Tomsk region. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2012;(2):50–1. (In Russ.)]. DOI: http://dx.doi.org/10.14412/2074-2711-2012-382.
4. Гнездицкий ВВ. Вызванные потенциалы мозга в клинической практике. Таганрог: ТРТУ; 1997. 252 с. [Gnezditskii VV. Vyzvannye potentsialy mozga v klinicheskoi praktike [The caused potentials of a brain in clinical practice]. Taganrog: TRTU; 1997. 252 p.]
5. Карпов СМ, Батурин ВА, Тельбух ВП и др. Аутоантитела к основному белку миелина и их роль при демиелинизирующих процессах. Клиническая неврология. 2013;(3):16–9. [Karpov SM, Baturin VA, Tel'bukh VP, et al. Autobodies to the main protein of a myelin and their role at the demyelinating processes. Klinicheskaya nevrologiya. 2013;(3):16–9. (In Russ.)]
6. Шмидт ТЕ, Яхно НН. Рассеянный склероз: Руководство для врачей. 3-е изд. Москва: МЕДпресс-информ; 2012. 272 с. [Shmidt TE, Yakhno NN. Rasseyannyi skleroz: rukovodstvo dlya vrachei [Multiple sclerosis: the guide for doctors]. 3rd ed. Moscow: MEDpressinform; 2012. 272 p.]
7. Кубарко АИ, Кубарко НП, Кубарко ЮА. Световая чувствительность у пациентов с деелинизирующей оптической нейропатией при остром ретробульбарном неврите. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014;114(2–2):40–7. [Kubarko AI, Kubarko NP, Kubarko YuA. Light sensitivity of the visual system in patients with demyelinating optic neuropathy in acute retrobulbar neuritis. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2014;114(2–2):40–7. (In Russ.)]
8. Costello F, Coupland S, Hodge W, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol. 2006;59(6):963–9. DOI: http://dx.doi.org/10.1002/ana.20851.
9. Rocca MA, Hickman SJ, Bo L, et al. Imaging the optic nerve in multiple sclerosis. Multiple Scler. 2005;11(5):537–41. DOI: http://dx.doi.org/10.1191/1352458505 ms1213oa.
10. Morquette JВ, Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? Neuroophthalmol. 2008;28(2):144–54. DOI: 10.1097/WNO.0b013e318177edf0.
Review
For citations:
Karpov S.M., Pazhigova Z.B., Karpova E.N. Visual evoked potentials in examining the visual analyzer in patients with multiple sclerosis. Neurology, Neuropsychiatry, Psychosomatics. 2014;6(3):27-31. (In Russ.) https://doi.org/10.14412/2074-2711-2014-3-27-31