Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Glioneuronal apoptosis and neuroinflammation in drug resistant temporal lobe epilepsy

https://doi.org/10.14412/2074-2711-2023-1-36-42

Abstract

The study of glioneuronal apoptosis and neuroinflammation is extremely important for understanding the causes of epilepsy. Currently, the focus is on neuronal apoptosis and certain aspects of neuroinflammation, while glial apoptosis remains poorly understood.
Objective: to evaluate neuronal and glial apoptosis in conjunction with neuroinflammation in the area of the epileptic focus in patients with focal drug-resistant epilepsy (DRE).
Material and methods. Biopsy specimens of the cortex and white matter of the temporal lobe of the brain from 30 patients with focal DRE due to focal cortical dysplasia were studied. We evaluated pathological changes and structural signs of apoptosis, levels of apoptotic and pro-inflam-matory factors such as caspase-3, caspase-9, FAS, FAS ligand (FAS-L), tumor necrosis factor α (TNFα), p53, nuclear factor κB (NF-κB). Histological methods, transmission electron microscopy (TEM), immunohistochemical study (IHC), and Western blot (WB) were used. The comparison group consisted of 21 people without epilepsy and brain involvement.
Results. In DRE patients IHC revealed the expression of active caspase-3 in single neurons (20% of cases) and in gliocytes of the cerebral cortex and white matter (100% of cases). TEM revealed ultrastructural signs of apoptosis in all cases in neurons and oligodendrocytes. The WB of the epileptic focus showed an increased expression of the apoptotic factors caspase-9, FAS, p53 and pro-inflammatory factors TNFα, NF-κB.
Conclusion. The results obtained indicate the presence of associated apoptosis and neuroinflammation processes of in DRE. Glial apoptosis is actively involved in epileptogenesis. The main part of apoptotic glia is oligodendrocytes, which explains the well-known phenomenon of myelin damage in epilepsy. Along with neuronal apoptosis, oligodendrocyte apoptosis together with neuroinflammation forms a self-sustaining pathological focus, which contributes to the progression of the disease and the occurrence of relapses.

About the Authors

T. V. Sokolova
Polenov Neurosurgical Institute, Almazov National Medical Centre
Russian Federation

Tatyana Vladislavovna Sokolova

191014, St. Petersburg, Mayakovsky St., 12


Competing Interests:

There are no conflicts of interest.



A. V. Litovchenko
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science
Russian Federation

194223, St. Petersburg, Toreza Prosp., 44


Competing Interests:

There are no conflicts of interest.



N. M. Paramonova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science
Russian Federation

194223, St. Petersburg, Toreza Prosp., 44


Competing Interests:

There are no conflicts of interest.



V. R. Kasumov
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

194100, St. Petersburg, Litovskaya St., 2


Competing Interests:

There are no conflicts of interest.



S. V. Kravtsova
Polenov Neurosurgical Institute, Almazov National Medical Centre
Russian Federation

191014, St. Petersburg, Mayakovsky St., 12


Competing Interests:

There are no conflicts of interest.



V. G. Nezdorovina
Polenov Neurosurgical Institute, Almazov National Medical Centre
Russian Federation

191014, St. Petersburg, Mayakovsky St., 12


Competing Interests:

There are no conflicts of interest.



D. A. Sitovskaya
Polenov Neurosurgical Institute, Almazov National Medical Centre
Russian Federation

191014, St. Petersburg, Mayakovsky St., 12


Competing Interests:

There are no conflicts of interest.



E. N. Skiteva
Polenov Neurosurgical Institute, Almazov National Medical Centre
Russian Federation

191014, St. Petersburg, Mayakovsky St., 12


Competing Interests:

There are no conflicts of interest.



E. D. Bazhanova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science; Golikov Research Center of Toxicology, Federal Medical and Biological Agency
Russian Federation

194223, St. Petersburg, Toreza Prosp., 44
192019, St. Petersburg, Bekhtereva St., 1


Competing Interests:

There are no conflicts of interest.



Y. M. Zabrodskaya
Polenov Neurosurgical Institute, Almazov National Medical Centre; Golikov Research Center of Toxicology, Federal Medical and Biological Agency
Russian Federation

191014, St. Petersburg, Mayakovsky St., 12
192019, St. Petersburg, Bekhtereva St., 1


Competing Interests:

There are no conflicts of interest.



References

1. Gidal BE, Ferry J, Reyderman L, et al. Use of extended-release and immediate-release anti-seizure medications with a long half-life to improve adherence in epilepsy: A guide for clinicians. Epilepsy Behav. 2021 Jul;120:107993. doi:10.1016/j.yebeh.2021.107993

2. Junhong W, Jiyuan L, Wei J, et al. Valproic acid-induced encephalopathy: A review of clinical features, risk factors, diagnosis, and treatment. Epilepsy Behav. 2021 May;120:107967. doi:10.1016/j.yebeh.2021.10796

3. Odintsova GV, Kuralbaev AK, Nezdorovina VG, et al. Surgical treatment of temporal epilepsia: problems and effectiveness (a clinical case). Epilepsiya i paroksizmal'nye sostoyaniya = Epilepsy and paroxysmal conditions. 2017;9(2):41-9. doi:10.17749/2077-8333.2017.9.2.041-049 (In Russ).

4. Schmeiser B, Wagner K, Schulze-Bonhage A, et al. Treatment of Mesiotemporal Lobe Epilepsy: Which Approach is Favorable? Neurosurgery. 2017 Dec;81(6):992-1004. doi:10.1093/neuros/nyx138

5. Sazhina TA, Sitovskaya DA, Zabrodskaya YM, et al. Functional Imbalance of Glutamate- and GABAergic Neuronal Systems in the Pathogenesis of Focal DrugResistant Epilepsy in Humans. Bull Exp Biol Med. 2020 Feb;168(4):529-32. doi:10.1007/s10517-020-04747-3

6. Sloviter RS. Progress on the issue of excitotoxic injury modifi cation vs. real neuroprotection; implications for post-traumatic epilepsy. Neuropharmacology. 2011 OctNov;61(5-6):1048-50. doi:10.1016/j.neuropharm.2011.07.038

7. Sokolova TV, Zabrodskaya YuM, Paramonova NM, et al. Apoptosis of brain cells in epileptic focus at drug-resistant temporal lobe epilepsy. Translyatsionnaya meditsina = Translational Medicine. 2017;4(6):22-33. doi:10.18705/2311-4495-2017-4-6-22-33 (In Russ).

8. Bedner P, Dupper A, Huttmann K, et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015 May;138(5):1208-22. doi:10.1093/brain/awv067

9. Narkilahti S, PirttilК TJ, Lukasiuk K, et al. Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci. 2003 Sep;18(6):1486-96. doi:10.1046/j.1460-9568.2003.02874.x

10. Luo X, Li Z, Zhao J, et al. Fyn gene silencing reduces oligodendrocytes apoptosis through inhibiting ERK1/2 phosphorylation in epilepsy. Artif Cells Nanomed Biotechnol. 2020 Dec;48(1):298-304. doi:10.1080/21691401.2019.1671428

11. Henshall DC, Engel T. Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci. 2013 Jul;7:110. doi:10.3389/fncel.2013.00110

12. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab. 2005 Dec;25(12):1557-72. doi:10.1038/sj.jcbfm.9600149

13. Litovchenko AV, Zabrodskaya YuM, Sitovskaya DA, et al. Markers of neuroinflammation and apoptosis in the temporal lobe of patients with drug-resistent epilepsy. J Evol Biochem Phys. 2021 Sep;57(5):1040-49. doi:10.1134/S0022093021050069

14. Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis. Int J Physiol Pathophysiol Pharmacol. 2009 Mar;1(2):97-115.

15. Xu D, Robinson AP, Ishii T, et al. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med. 2018 Apr;215(4):1169-86. doi:10.1084/jem.20171285

16. Hu X, Wang JY, Gu R, et al. The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath – an experimental study. Eur Rev Med Pharmacol Sci. 2016 Nov;20(21):4516-24.

17. Lapato AS, Szu JI, Hasselmann JPC, et al. Chronic demyelination-induced seizures. Neuroscience. 2017 Mar;27:409-22. doi:10.1016/j.neuroscience.2017.01.035

18. Sitovskaya DA, Zabrodskaya YuM, Sokolova TV, et al. Structural heterogeneity of epileptic foci in local drug-resistant epilepsy. Arkhiv patologii. 2020;82(6):5-15. doi:10.17116/patol2020820615 (In Russ.).

19. Luo Y, Hu O, Zhang Q, et al. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res. 2015 Nov;1627:154-64. doi:10.1016/j.brainres.2015.09.027

20. Gaikova ON, Suvorov AV, Paramonova NM. Significance of cerebral white matter damage in pathogenesis of localisationrelated epilepsy. Rossiiskii neirokhirurgicheskii zhurnal im. prof. A.L. Polenova = Russian Neurosurgical Journal named after professor A.L. Polenov. 2011;3(1):19-24 (In Russ.).

21. Kiray H, Lindsay SL, Hosseinzadeh S, et al. The multifaceted role of astrocytes in regulating myelination. Exp Neurol. 2016 Sep;283:541-9. doi:10.1016/j.expneurol.2016.03.009

22. Greene LA, Liu DX, Troy CM, et al. Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim. Biophys. Acta. 2007 Apr;1772(4):392-401. doi:10.1016/j.bbadis.2006.12.003

23. Mussbacher M, Salzmann M, Brostjan C, et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol. 2019 Feb;10:85. doi:10.3389/fimmu.2019.00085

24. Perez-Figueroa E, Alvarez-Carrasco P, Ortega E, et al. Neutrophils: many ways to die. Front Immunol. 2021 Mar;12:631821. doi:10.3389/fimmu.2021.631821

25. Sergeeva SP, Savin AA, Litvitskiy PF. A role of the Fas system in the pathogenesis of ischemic stroke. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(3):3-8. doi:10.17116/jnevro2016116323-8 (In Russ.).

26. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflam. 2018 May;15(1):144. doi:10.1186/s12974-018-1192-7

27. Lavrik IN, Krammer PH. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012 Jan;19(1):36-41. doi:10.1038/cdd.2011.155

28. Prescott JA, Mitchell JP, Cook SJ. Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J. 2021 Jul;478(13):2619-64. doi:10.1042/BCJ20210139


Review

For citations:


Sokolova TV, Litovchenko AV, Paramonova NM, Kasumov VR, Kravtsova SV, Nezdorovina VG, Sitovskaya DA, Skiteva EN, Bazhanova ED, Zabrodskaya YM. Glioneuronal apoptosis and neuroinflammation in drug resistant temporal lobe epilepsy. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2023;15(1):36-42. (In Russ.) https://doi.org/10.14412/2074-2711-2023-1-36-42

Views: 616


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)