Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Recombinant botulinum toxin as a new stage in the development of botulinum toxin therapy. Possibilities and perspectives of use in neurological practice

https://doi.org/10.14412/2074-2711-2022-6-103-109

Abstract

Currently, eight natural serotypes of botulinum neurotoxin (BNT-A-G, -X) are known. The mechanism of action of all BNT serotypes is presynaptic blockade of SNARE transport proteins (Soluble N-ethylmaleimide-sensitive factor [NSF] Attachment Protein Receptor), as a result of which the release of acetylcholine into the synaptic cleft is disrupted and neuromuscular transmission is blocked.
Each botulinum toxin serotype selectively binds to its own presynaptic membrane receptor and causes cleavage of its own SNARE protein. These differences determine the neuronal specificity and activity of botulinum toxins, which leads to their unique pharmacological properties, such as activity, duration of action, and time to onset of action.
In the international clinical practice, only two BNT serotypes (A and B) are allowed to be used, however, in recent years, a large number of studies on the efficacy and safety of other BNT serotypes (E, C, F) have been carried out, and technologies for changing their natural properties have been developed.
One of the indications for the use of botulinum therapy in neurology is the correction of post-stroke spasticity. Currently, BNT-A is used for this purpose, clinical improvement after its injection occurs after 2 weeks, the therapeutic effect persists for 3 months, and then the symptoms of spasticity increase again, which worsens the patient's quality of life and reduces the possibility of medical rehabilitation. The use of fast-acting recombinant botulinum toxins for this purpose could help overcome this disadvantage of BNT-A therapy.
Currently the LANTIMA study, supported by IPSEN company, is going on to evaluate the safety profile and level of efficacy of modified recombinant botulinum toxin type AB in the treatment of upper limb spasticity in adults.

About the Authors

R. K. Shikhkerimov
City polyclinic № 166, Moscow Healthcare Department
Russian Federation

Rafiz Kairovich Shikhkerimov

115551, Moscow, Domodedovskaya St., 9


Competing Interests:

The conflict of interest has not affected the results of the investigation.



E. V. Istomina
City polyclinic № 166, Moscow Healthcare Department
Russian Federation

115551, Moscow, Domodedovskaya St., 9


Competing Interests:

The conflict of interest has not affected the results of the investigation.



References

1. Dressler D. Botulinum toxin drugs: brief history and outlook. J Neural Transm (Vienna). 2016 Mar;123(3):277-9. doi:10.1007/s00702-015-1478-1. Epub 2015 Nov 11.

2. Jankovic J. Botulinum toxin: State of the art. Mov Disord. 2017 Aug;32(8):1131-8. doi:10.1002/mds.27072. Epub 2017 Jun 22.

3. Supotnickij MV. Mikroorganizmy, toksiny i jepidemii [Microorganisms, toxins and epidemics]. Moscow: Vuzovskaya kniga; 2000. Available from: https://www.supotnitskiy.ru/book/book1-1-5.htm (accessed 10.08.2022) (In Russ.).

4. Chen S. Clinical Uses of Botulinum Neurotoxins: Current Indications, Limitations and Future Developments. Toxins. 2012;4(10):913-39. doi:10.3390/toxins4100913

5. Peck MW, Smith TJ, Anniballi F, et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel). 2017;9(1):38. doi:10.3390/toxins9010038

6. Masuyer G, Zhang S, Barkho S, et al. Structural characterisation of the catalytic domain of botulinum neurotoxin X-high activity and unique substrate specificity. Sci Rep. 2018 Mar 14;8(1):4518. doi:10.1038/s41598-018-22842-4

7. Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol. 2014;12(8):535-49. doi:10.1038/nrmicro3295

8. Orlova OR. Opportunities and prospects for the use of botulinum toxin in clinical practice. Russkij medicinskij zhurnal. 2006;14(23):3-10. Available from: https://paininfo.ru/articles/rmj/788.html (accessed 10.08.2022) (In Russ.).

9. Mtui EP, Gruener G, Dockery P. Fitzgerald's Clinical Neuroanatomy and Neuroscience. Philadelphia, PA: Elsevier; 2016. P. 85-101.

10. Dolly JO, Lawrence GW, Meng J, et al. Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol. 2009;9(3):326-35. doi:10.1016/j.coph.2009.03.004

11. Montecucco C, Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a fourstep mechanism. FEBS Lett. 1994;346(1):92-8. doi:10.1016/0014-5793(94)00449-8

12. Dressler D. Pharmakologie der Botulinumtoxinmedikamente [Pharmacology of botulinum toxin drugs]. HNO. 2012 Jun;60(6):496-502 (In Germ.). doi:10.1007/s00106-012-2494-1

13. Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000 Apr;80(2):717-66. doi:10.1152/physrev.2000.80.2.717

14. Binz T, Rummel A. Cell entry strategy of clostridial neurotoxins. J Neurochem. 2009 Jun;109(6):1584-95. doi:10.1111/j.1471-4159.2009.06093.x. Epub 2009 Apr 28.

15. Dong M, Yeh F, Tepp WH, et al. SV2 is the protein receptor for botulinum neurotoxin A. Science. 2006 Apr 28;312(5773):592-6. doi:10.1126/science.1123654. Epub 2006 Mar 16.

16. Pirazzini M, Rossetto O, Eleopra R, et al. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017;69(2):200-35. doi:10.1124/pr.116.012658

17. Dong M, Richards DA, Goodnough MC, et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol. 2003;162(7):1293-303. doi:10.1083/jcb.200305098

18. Donald S, Elliott M, Gray B, et al. A comparison of biological activity of commercially available purified native botulinum neurotoxin serotypes A1 to F1 in vitro, ex vivo, and in vivo. Pharmacol Res Perspect. 2018;6(6):e00446. doi:10.1002/prp2.446

19. Tsai YC, Maditz R, Kuo CL, et al. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci USA. 2010;107(38):16554-9. doi:10.1073/pnas.1008302107

20. Wang J, Zurawski TH, Meng J, et al. A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem. 2011;286(8):6375-85. doi:10.1074/jbc.m110.181784

21. Artemenko AR, Kurenkov AL. Botulinum toxin: yesterday, today, tomorrow. Nervnomyshechnyye bolezni = Neuromuscular Diseases. 2013;(2):6-19. Available from: https://nmb.abvpress.ru/jour/article/view/44/40 (accessed 10.08.2022) (In Russ.).

22. Fonfria E, Maignel J, Lezmi S, et al. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel). 2018;10(5):208. doi:10.3390/toxins10050208

23. Bentivoglio AR, Del Grande A, Petracca M, et al. Clinical differences between botulinum neurotoxin type A and B. Toxicon. 2015;107(Pt A):77-84. doi:10.1016/j.toxicon.2015.08.001

24. Ginsberg D. The epidemiology and pathophysiology of neurogenic bladder. Am J Manag Care. 2013;19(10 Suppl):s191-6.

25. Korolev AA. On the issue of botulinum therapy for post-stroke spastic paresis: mechanisms of action of botulinum toxin, algorithm for restorative treatment. Lechashhij vrach. 2012;(2):78-84. Available from: https://www.lvrach.ru/2012/02/15435355 (accessed 10.08.2022) (In Russ.).

26. Spasticity in adults: management using botulinum toxin. National guidelines. London: RCP; 2018. Available from: https://www.kcl.ac.uk/cicelysaunders/attachments/spasticity-in-adults-managment-usingbotulinum-toxin.pdf

27. Ischemic stroke and transient ischemic attack in adults. Clinical guidelines. Moscow: Ministry of Health of Russia; 2021. Available from: https://cr.minzdrav.gov.ru/schema/171_2 (accessed 10.08.2022) (In Russ.).

28. Datta Gupta A, Visvanathan R, Cameron I, et al. Efficacy of botulinum toxin in modifying spasticity to improve walking and quality of life in post-stroke lower limb spasticity – a randomized double-blind placebo controlled study. BMC Neurol. 2019;19(1):96. doi:10.1186/s12883-019-1325-3

29. Eleopra R, Rinaldo S, Montecucco C, et al. Clinical duration of action of different botulinum toxin types in humans. Toxicon. 2020;179:84-91. doi:10.1016/j.toxicon.2020.02.020

30. Yoelin SG, Dhawan SS, Vitarella D, et al. Safety and Efficacy of EB-001, a Novel Type E Botulinum Toxin, in Subjects with Glabellar Frown Lines: Results of a Phase 2, Randomized, Placebo-Controlled, AscendingDose Study. Plast Reconstr Surg. 2018;142(6):847e-855e. doi:10.1097/PRS.0000000000005029

31. Webb RP. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins (Basel). 2018;10(6):231. doi:10.3390/toxins10060231

32. Tao L, Peng L, Berntsson RP, et al. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun. 2017;8(1):53. doi:10.1038/s41467-017-00064-y

33. Raphael BH, Choudoir MJ, Luquez C, et al. Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol. 2010;76(14):4805-12. doi:10.1128/aem.03109-09

34. Burgin D, Perier C, Hackett G, et al. New Modified Recombinant Botulinum Neurotoxin Type F with Enhanced Potency. Toxins (Basel). 2021;13(12):834. doi:10.3390/toxins13120834

35. Weisemann J, Krez N, Fiebig U, et al. Generation and Characterization of Six Recombinant Botulinum Neurotoxins as Reference Material to Serve in an International Proficiency Test. Toxins (Basel). 2015;7(12):5035-54. doi:10.3390/toxins7124861

36. Rasetti-Escargueil C, Popoff MR. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins (Basel). 2020 Dec 22;13(1):1. doi:10.3390/toxins13010001

37. Fonfria E, Elliott M, Beard M, et al. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins (Basel). 2018 Jul 4;10(7):278. doi:10.3390/toxins10070278

38. Hooker A, Palan S, Beard M. Recombinant botulinum neurotoxin serotype A1 (SXN102342): Protein engineering and process development. Toxicon. 2016;123:40. doi:10.1016/j.toxicon.2016.11.113

39. Perier C, Martin V, Cornet S, et al. Recombinant botulinum neurotoxin serotype A1 in vivo characterization. Pharmacol Res Perspect. 2021;9(5):e00857. doi:10.1002/prp2.857

40. Keith F, John C. Targeted secretion inhibitors-innovative protein therapeutics. Toxins (Basel). 2010 Dec;2(12):2795-815. doi:10.3390/toxins2122795. Epub 2010 Dec 3.

41. Pons L, Vilain C, Volteau M, et al. Safety and pharmacodynamics of a novel recombinant botulinum toxin E (rBoNT-E): Results of a phase 1 study in healthy male subjects compared with abobotulinumtoxinA (Dysport®). J Neurol Sci. 2019;407:116516. doi:10.1016/j.jns.2019.116516

42. Eleopra R, Tugnoli V, Rossetto O, et al. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett. 1998 Nov 13;256(3):135-8. doi:10.1016/s0304-3940(98)00775-7

43. Jacinto J, Varriale P, Pain E, et al. Patient Perspectives on the Therapeutic Profile of Botulinum Neurotoxin Type A in Spasticity. Front Neurol. 2020 May 7;11:388. doi:10.3389/fneur.2020.00388. Erratum in: Front Neurol. 2020 Dec 17;11:629181.

44. A Study to Assess the Safety and Efficacy of IPN10200 of in Adult Participants with Upper Limb Spasticity (LANTIMA). Available from: https://clinicaltrials.gov


Review

For citations:


Shikhkerimov RK, Istomina EV. Recombinant botulinum toxin as a new stage in the development of botulinum toxin therapy. Possibilities and perspectives of use in neurological practice. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):103-109. (In Russ.) https://doi.org/10.14412/2074-2711-2022-6-103-109

Views: 1208


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)