Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

The role of neurotrophic factors in the rehabilitation of children with cerebral palsy

https://doi.org/10.14412/2074-2711-2022-6-12-19

Abstract

Improving the function of the upper limb in children with cerebral palsy (CP) is one of the main tasks of rehabilitation treatment and socialization of the patient.
Objective: to determine the dynamics of the concentration of neurotrophic factors (NTFs) in the peripheral blood of children with CP during rehabilitation treatment using the non-invasive interface “brain – computer – exoskeleton of the hand” (“NIMK – exoskeleton of the hand”).
Patients and methods. 151 patients aged 12 to 18 years with spastic forms of CP were examined. The complex of rehabilitation treatment included training on the hardware and software complex “NIMK – Exokist-2”. The dynamics of the spasticity level, muscle strength in the paretic limbs, the level of household skills, the concentration of NTFs (brain growth factor – BDNF; neurotrophins 3 and 4/5 – NT-3, NT-4/5; fibroblast growth factors – FGF-1 and FGF-2) in peripheral blood were determined.
Results and discussion. A positive result was obtained from the use of the combined technique “NIMK – exoskeleton of the hand” in the rehabilitation of children with CP due to an increase in the upper limbs muscle strength, an increase in working capacity, an improvement in everyday skills and stability of attention. At the same time, a significant decrease in the concentration of a number of NTFs was noted: BDNF, NT-3 and NT4/5, FGF-1 and FGF-2 – on the 10th day after the completion of rehabilitation treatment.
Conclusion. The results of clinical and laboratory studies show that during the use of the “NIMK – exoskeleton of the hand” technique the improvement in the upper limbs motor functions in children with spastic forms of CP is associated with a decrease in the concentration of NTFs in the peripheral blood, which may indicate their active involvement in this process.

About the Authors

N. V. Larina
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Natalya Valerievna Larina

295051, Republic of Crimea, Simferopol, Lenin Boulevard, 5/7


Competing Interests:

There are no conflicts of interest.



A. I. Gordienko
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

295051, Republic of Crimea, Simferopol, Lenin Boulevard, 5/7


Competing Interests:

There are no conflicts of interest.



L. L. Korsunskaya
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

295051, Republic of Crimea, Simferopol, Lenin Boulevard, 5/7


Competing Interests:

There are no conflicts of interest.



N. V. Khimich
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

295051, Republic of Crimea, Simferopol, Lenin Boulevard, 5/7


Competing Interests:

There are no conflicts of interest.



References

1. Batysheva TT, Krapivkin AI, Tsaregorodtsev AD, et al. Rehabilitation of children with the pathology of central nervous system. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2017;62(6):7-15. doi:10.21508/1027-4065-2017-62-6-7-15 (In Russ.).

2. Batysheva TT, Trepilets VM, Klimov YuA, et al. The modern approach to the problem of cerebral palsy. Detskaya i podrostkovaya reabilitatsiya. 2016;2(27):5-9 (In Russ.).

3. Badalyan LO, Zhurba LT, Timonina OV. Detskiye tserebral'nyye paralichi [Children's cerebral palsy]. Moscow; 2013. 325 p. (In Russ.).

4. Korsunskaya LL, Savchuk EO, Larina NV, et al. The effect of the technology “Non-invasive interface “Brain – Computer – Exohand” in combination with nootropic therapy in the rehabilitation of children with cerebral palsy. Meditsinskiy vestnik Severnogo Kavkaza. 2020;15(1):58-61. doi:10.14300/mnnc.2020.15012 (In Russ.).

5. Lopresti AL, Maker GL, Hood SD, Drummond PD. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jan 3;48:102-11. doi:10.1016/j.pnpbp.2013.09.017. Epub 2013 Oct 5.

6. El-Tamawy MS, Abd-Allah F, Ahmed SM, et al. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation. 2014;34(1):209-13. doi:10.3233/NRE-131020

7. Tanaka R, Miyasaka Y, Yada K, et al. Basic fibroblast growth factor increases regional cerebral blood flow and reducesinfarct size after experimental ischemia in a rat model. Stroke. 1995;26(11):2154-8. doi:10.1161/01.STR.26.11.2154

8. Kryzhanovskaya SYu, Zapara MA, Glazachev OS. Neurotrophins and Adaptation to Environmental Stimuli: Opportunities for Expanding «Therapeutic Capacity» (Mini-Review). Vestnik Mezhdunarodnoy Akademii Nauk (Russkaya sektsiya). 2020;(1):36-43 (In Russ.).

9. Gomazkov OA. Neyrogenez kak adaptivnaya funktsiya mozga [Neurogenesis as an adaptive function of the brain]. Moscow: Research Institute of Biomedical Chemistry; 2014. 86 p. (In Russ.).

10. Castren E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013 May;36(5):259-67. doi:10.1016/j.tins.2012.12.010. Epub 2013 Feb 1.

11. Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011 Jun;134(Pt 6):1591-609. doi:10.1093/brain/awr039. Epub 2011 Apr 10.

12. Ventimiglia R, Jones BE, Müller A. A quantitative method for morphometric analysis in neuronal cell culture: unbiased estimation of neuron area and number of branch points. J Neurosci Methods. 1995 Mar;57(1):63-6. doi:10.1016/0165-0270(94)00126-2

13. Alcantara CC, Garcia-Salazar LF, Silva-Couto MA, et al. Post-stroke BDNF Concentration Changes Following Physical Exercise: A Systematic Review. Front Neurol. 2018 Aug 28;9:637. doi:10.3389/fneur.2018.00637

14. Kowianski P, Lietzau G, Czuba E, et al. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol Neurobiol. 2018 Apr;38(3):579-93. doi:10.1007/s10571-017-0510-4. Epub 2017 Jun 16.

15. Lin TN, Te J, Lee M, et al. Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res. 1997 Oct 3;49(1-2):255-65. doi:10.1016/s0169-328x(97)00152-6

16. Lucini C, D’Angelo L, Cacialli P, et al. BDNF, Brain, and Regeneration: Insights from Zebrafish. Int J Mol Sci. 2018 Oct 13;19(10):3155. doi:10.3390/ijms19103155

17. Jin-qiao S, Bin S, Wen-hao Z, Yi Y. Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury. Brain Dev. 2009 May;31(5):331-40. doi:10.1016/j.braindev.2008.06.005. Epub 2008 Jul 26.

18. Kiprianova I, Schindowski K, von Bohlen und Halbach O, et al. Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp Neurol. 2004 Oct;189(2):252-60. doi:10.1016/j.expneurol.2004.06.004

19. Leker RR, Soldner F, Velasco I, et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007 Jan;38(1):153-61. doi:10.1161/01.STR.0000252156.65953.a9. Epub 2006 Nov 22.

20. Naylor M, Bowen KK, Sailor KA, et al. Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int. 2005 Dec;47(8):565-72. doi:10.1016/j.neuint.2005.07.003. Epub 2005 Sep 9.

21. Okada T, Kataoka Y, Takeshita A, et al. Effects of transient forebrain ischemia on the hippocampus of the Mongolian gerbil (Meriones unguiculatus): an immunohistochemical study. Zoolog Sci. 2013 Jun;30(6):484-9. doi:10.2108/zsj.30.484

22. Imamura T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull. 2014;37(7):1081-9. doi:10.1248/bpb.b14-00265

23. Lenhard T, Schober A, Suter-Crazzolara C, Unsicker K. Fibroblast growth factor-2 requires glial-cell-line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons. Mol Cell Neurosci. 2002 Jun;20(2):181-97. doi:10.1006/mcne.2002.1134

24. Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O. Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist. 2010 Aug;16(4):357-73. doi:10.1177/1073858410371513. Epub 2010 Jun 25.

25. Speliotes EK, Caday CG, Do T, et al. Increased expression of basic fibroblast growth factor (bFGF) following focal cerebral infarction in the rat. Brain Res Mol Brain Res. 1996 Jul;39(1-2):31-42. doi:10.1016/0169-328x(95)00351-r

26. Zhao XC, Zhang LM, Tong DY, et al. Propofol increases expression of basic fibroblast growth factor after transient cerebral ischemia in rats. Neurochem Res. 2013 Mar;38(3):530-7. doi:10.1007/s11064-012-0945-4. Epub 2012 Dec 18.

27. Watanabe T, Okuda Y, Nonoguchi N, et al. Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004 Nov;24(11):1205-13. doi:10.1097/01.WCB.0000136525.75839.41

28. Wei OY, Huang YL, Da CD, Cheng JS. Alteration of basic fibroblast growth factor expression in rat during cerebral ischemia. Acta Pharmacol Sin. 2000 Apr;21(4):296-300.

29. Ye J, Lin H, Mu J, et al. Effect of basic fibroblast growth factor on hippocampal cholinergic neurons in a rodent model of ischaemic encephalopathy. Basic Clin Pharmacol Toxicol. 2010 Dec;107(6):931-9. doi:10.1111/j.1742-7843.2010.00603.x

30. Xiao N, Thor D, Yu WY. Neurotrophins BDNF and NT4/5 accelerate dental pulp stem cell migration. Biomed J. 2021 Jun;44(3):363-8. doi:10.1016/j.bj.2020.03.010. Epub 2020 Apr 21.

31. Altar CA, Boylan CB, Fritsche M, et al. Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J Neurochem. 1994 Sep;63(3):1021-32. doi:10.1046/j.1471-4159.1994.63031021.x

32. Aarse J, Herlitze S, Manahan-Vaughan D. The requirement of BDNF for hippocampal synaptic plasticity is experience-dependent. Hippocampus. 2016 Jun;26(6):739-51. doi:10.1002/hipo.22555. Epub 2016 Jan 19.

33. Benarroch EE. Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology. 2015 Apr 21;84(16):1693-704. doi:10.1212/WNL.0000000000001507. Epub 2015 Mar 27.

34. Brunelli A, Dimauro I, Sgro P, et al. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med Sci Sports Exerc. 2012 Oct;44(10):1871-80. doi:10.1249/MSS.0b013e31825ab69b

35. Widmer HR, Hefti F. Stimulation of GABAergic neuron differentiation by NT-4/5 in cultures of rat cerebral cortex. Brain Res Dev Brain Res. 1994 Jul 15;80(1-2):279-84. doi:10.1016/0165-3806(94)90114-7

36. Friedman HS, Tucker JS, Schwartz JE, et al. Childhood conscientiousness and longevity: health behaviors and cause of death. J Pers Soc Psychol. 1995 Apr;68(4):696-703. doi:10.1037//0022-3514.68.4.696


Review

For citations:


Larina NV, Gordienko AI, Korsunskaya LL, Khimich NV. The role of neurotrophic factors in the rehabilitation of children with cerebral palsy. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):12-19. (In Russ.) https://doi.org/10.14412/2074-2711-2022-6-12-19

Views: 560


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)