The role of oxidative stress in the development of Alzheimer's disease
https://doi.org/10.14412/2074-2711-2022-4-68-74
Abstract
Oxidative stress is one of the main mechanisms for the development of Alzheimer's disease (AD); it is closely related to other key mechanisms of neurodegeneration such as mitochondrial dysfunction, inflammation, dysregulation of metal homeostasis, and protein misfolding. We have considered the role of beta-amyloid plaques and neurofibrillary tau-glomeruli in the development of AD. We analyzed the role of the products of oxidation of proteins, lipids and nucleic acids in the pathogenesis of the disease, which can be considered as markers of an early stage of AD. The main mechanisms of mitochondrial dysfunction, the damaging effect of accumulating metals under oxidative stress, as well as the role of brain hypoperfusion in its occurrence are considered.
About the Authors
V. N. NikolenkoRussian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
N. A. Rizaeva
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
K. V. Bulygin
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
119991, Moscow, Leninskiye Gory, 1
Competing Interests:
There are no conflicts of interest.
V. M. Anokhina
Russian Federation
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
Competing Interests:
There are no conflicts of interest.
A. A. Bolotskaya
Russian Federation
Anastasia Aleksandrovna Bolotskaya
119991, Moscow, Bolshaya Pirogovskaya St., 2, Build. 4
Competing Interests:
There are no conflicts of interest.
References
1. Shi X, Ohta Y, Liu X, et al. Chronic Cerebral Hypoperfusion Activates the Coagulation and Complement Cascades in Alzheimer's Disease Mice. Neuroscience. 2019;416:126-36. doi:10.1016/J.NEUROSCIENCE.2019.07.050
2. 2019 ALZHEIMER'S DISEASE FACTS AND FIGURES Includes a Special Report on Alzheimer's Detection in the Primary Care Setting: Connecting Patients and Physicians. Available from: https://www.alz.org/media/Documents/alzheimers-facts-and-figures-2019-r.pdf
3. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener. 2019 Aug 2;14(1):32. doi:10.1186/s13024-019-0333-5
4. Collin F, Cheignon C, Hureau C. Oxidative stress as a biomarker for Alzheimer's disease. Biomark Med. 2018 Mar;12(3):201-3. doi:10.2217/bmm-2017-0456. Epub 2018 Feb 13.
5. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59. doi:10.1007/BF00308809
6. Van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020 Jan;21(1):21-35. doi:10.1038/s41583-019-0240-3. Epub 2019 Nov 28.
7. Cruchaga C, Haller G, Chakraverty S, et al; NIA-LOAD/NCRAD Family Study Consortium. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families. PLoS One. 2012;7(2):e31039. doi:10.1371/journal.pone.0031039. Epub 2012 Feb 1.
8. Wolfe MS. When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Reports. 2007;8(2):136-40. doi:10.1038/SJ.EMBOR.7400896
9. Thies W, Bleiler L. Alzheimer's Association. 2011 Alzheimer's disease facts and figures. Alzheimers Dement. 2011 Mar;7(2):208-44. doi:10.1016/j.jalz.2011.02.004
10. Beam CR, Kaneshiro C, Jang JY, et al. Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer's Disease. J Alzheimers Dis. 2018;64(4):1077-83. doi:10.3233/JAD-180141
11. Abyadeh M, Djafarian K, Heydarinejad F, et al. Association between Apolipoprotein E Gene Polymorphism and Alzheimer's Disease in an Iranian Population: A Meta-Analysis. J Alzheimers Dis. 2018;64(4):1077-83. doi:10.3233/JAD-180141
12. Vetrivel KS, Thinakaran G. Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology. 2006 Jan 24;66(2 Suppl 1):S69-73. doi:10.1212/01.wnl.0000192107.17175.39
13. Hooli BV, Mohapatra G, Mattheisen M, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 2012;78(16):1250-7. doi:10.1212/WNL.0B013E3182515972
14. Uddin MS, Kabir MT. Oxidative Stress in Alzheimer's Disease: Molecular Hallmarks of Underlying Vulnerability. In: Ashraf G, Alexiou A, editors. Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease. Singapure: Springer; 2019. P. 91-115. doi:10.1007/978-981-13-9636-6_5
15. Nunomura A, Perry G. RNA and oxidative stress in Alzheimer's disease: Focus on microRNAs. Oxid Med Cell Longev. 2020 Nov 30;2020:2638130. doi:10.1155/2020/2638130
16. Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer's disease – a mini-review. Gerontology. 2014;60(5):381-5. doi:10.1159/000358875
17. Wippold FJ, Cairns N, Vo K, et al. Neuropathology for the neuroradiologist: plaques and tangles. AJNR Am J Neuroradiol. 2008;29(1):18-22. doi:10.3174/AJNR.A0781
18. Begcevic I, Brinc D, Brown M, et al. Brain-related proteins as potential CSF biomarkers of Alzheimer's disease: A targeted mass spectrometry approach. J Proteom. 2018;182:12-20. doi:10.1016/J.JPROT.2018.04.027
19. Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci. 2021 Feb 18;13:617588. doi:10.3389/fnagi.2021.617588. eCollection 2021.
20. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging. 2021;107:86-95. doi:10.1016/J.NEUROBIOLAGING.2021.07.014
21. Bello-Medina PC, Gonzalez-Franco DA, Vargas-Rodriguez I, Diaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia (Barcelona). 2021. doi:10.1016/J.NRLENG.2019.06.008
22. Martins RN, Villemagne V, Sohrabi HR, et al. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis JAD. 2018;62(3):965-92. doi:10.3233/JAD171145
23. Poprac P, Jomova K, Simunkova M, et al. Targeting Free Radicals in Oxidative StressRelated Human Diseases. Trends Pharmacol Sci. 2017;38(7):592-607. doi:10.1016/J.TIPS.2017.04.005
24. Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adhes Migrat. 2009;3(1):88-93. doi:10.4161/CAM.3.1.7402
25. Croteau E, Castellano CA, Fortier M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exper Gerontol. 2018;107:18-26. doi:10.1016/J.EXGER.2017.07.004
26. Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol. 2018;17(3):241-50. doi:10.1016/S1474-4422(18)30028-0
27. Torres LL, Quaglio NB, De Souza GT, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 2011;26(1):59-68. doi:10.3233/JAD-2011-110284
28. Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. 2013;2013:316523. doi:10.1155/2013/316523. Epub 2013 Jul 25.
29. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148-60. doi:10.1038/S41583-019-0132-6
30. Perrotte M, Le Page A, Fournet M, et al. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer's disease patients. Free Rad Biol Med. 2019;130:499-511. doi:10.1016/J.FREERADBIOMED.2018.10.452
31. Skoumalova A, Hort J. Blood markers of oxidative stress in Alzheimer's disease. J Cell Mol Med. 2012;16(10):2291-300. doi:10.1111/J.1582-4934.2012.01585.X
32. Jadoon S, Malik A. A Comprehensive Review Article on Isoprostanes as Biological Markers. Biochem Pharmacol. 2018;7(2):1-8. doi:10.4172/2167-0501.1000246
33. Ahmed N, Ahmed U, Thornalley PJ, et al. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. J Neurochem. 2005;92(2):255-63. doi:10.1111/J.1471-4159.2004.02864.X
34. Butterfield DA, Reed TT, Perluigi M, et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain Res. 2007;1148:243-8. doi:10.1016/J.BRAINRES.2007.02.084
35. Santos RX, Correia SC, Zhu X, et al. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxidant Redox Sign. 2013;18(18):2444-57. doi:10.1089/ARS.2012.5039
36. Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322(1-2):254-62. doi:10.1016/J.JNS.2012.05.030
37. Zhao Y, Jaber V, Alexandrov PN, et al. microRNA-Based Biomarkers in Alzheimer's Disease (AD). Front Neurosci. 2020;14:585432. doi:10.3389/FNINS.2020.585432
38. Angelucci F, Cechova K, Valis M, et al. MicroRNAs in Alzheimer's disease: Diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10(Jun):665. doi:10.3389/FPHAR.2019.00665/BIBTEX
39. Uddin MS, Kabir MT, Jeandet P, et al. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. Oxidat Med Cell Long. 2020;2020. doi:10.1155/2020/7039138
40. Swerdlow RH. Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. J Alzheimers Dis. 2018;62(3):1403-16. doi:10.3233/JAD-170585
41. Swerdlow RH, Khan SM. A 'mitochondrial cascade hypothesis' for sporadic Alzheimer's disease. Med Hypot. 2004;63(1):8-20. doi:10.1016/J.MEHY.2003.12.045
42. Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014;1842(8):1219-31. doi:10.1016/J.BBADIS.2013.09.010
43. Cenini G, Voos W. Mitochondria as potential targets in Alzheimer disease therapy: An update. Front Pharmacol. 2019;10(Jul):902. doi:10.3389/FPHAR.2019.00902/BIBTEX
44. Anantharaman M, Tangpong J, Keller JN, et al. Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer's disease. Am J Pathol. 2006;168(5):1608-18. doi:10.2353/AJPATH.2006.051223
45. Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13145-50. doi:10.1073/pnas.0806192105. Epub 2008 Aug 29.
46. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci. 2001;21(9):3017-23. doi:10.1523/JNEUROSCI.21-09-03017.2001
47. Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am J Pathol. 2008;173(2):470-82. doi:10.2353/AJPATH.2008.071208
48. Wu Z, Zhang J, Zhao B. Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins. Antioxidant Redox Sign. 2009;11(8):1805-18. doi:10.1089/ARS.2009.2427
49. Soltys DT, Pereira CPM, Rowies FT, et al. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging. 2019;73:161-70. doi:10.1016/J.NEUROBIOLAGING.2018.09.015
50. Kumar A, Singh A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer's disease and other neurological conditions. Front Pharmacol. 2015 Sep 24;6:206. doi:10.3389/FPHAR.2015.00206
51. Ayton S, Lei P, Bush AI. Biometals and their therapeutic implications in Alzheimer's disease. Neurotherapeutics. 2015 Jan;12(1):109-20. doi:10.1007/s13311-014-0312-z
52. Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochem Int. 2013;62(5):540-55. doi:10.1016/J.NEUINT.2012.08.014
53. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345(1-2):91-104. doi:10.1007/S11010-010-0563-X
54. Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J Alzheimers Dis. 2009;16(4):879-95. doi:10.3233/JAD-2009-1010
55. Yoshiike Y, Tanemura K, Murayama O, et al. New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J Biol Chem. 2001;276(34):32293-9. doi:10.1074/JBC.M010706200
56. Mo ZY, Zhu YZ, Zhu HL, et al. Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J Biol Chem. 2009;284(50):34648-57. doi:10.1074/JBC.M109.058883
57. Elipenahli C, Stack C, Jainuddin S, et al. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J Alzheimers Dis. 2012;28(1):173-82. doi:10.3233/JAD-2011-111190
58. Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal. 2014 Jan 10;20(2):308-24. doi:10.1089/ars.2012.4609. Epub 2012 Jul 13.
59. Moreira PI, Nunomura A, Nakamura M, et al. Nucleic acid oxidation in Alzheimer disease. Free Radical Biol Med. 2008;44(8):1493-505. doi:10.1016/J.FREERADBIOMED.2008.01.002
60. Ishii T, Hayakawa H, Igawa T, et al. Specific binding of PCBP1 to heavily oxidized RNA to induce cell death. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6715-20. doi:10.1073/pnas.1806912115. Epub 2018 Jun 11.
61. Tanaka M, Jaruga P, KЯpfer PA, et al. RNA oxidation catalyzed by cytochrome c leads to its depurination and cross-linking, which may facilitate cytochrome c release from mitochondria. Free Radical Biol Med. 2012;53(4):854-62. doi:10.1016/J.FREERADBIOMED.2012.05.044
62. Park JH, Hong JH, Lee SW, et al. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer's disease: A positron emission tomography study in rats. Sci Rep. 2019;9(1):1-9. doi:10.1038/s41598-019-50681-4
63. Austin BP, Nair VA, Meier TB, et al. Effects of Hypoperfusion in Alzheimer's Disease. J Alzheimers Dis. 2011;26(Suppl 3):123. doi:10.3233/JAD-2011-0010
64. Solis E, Hascup KN, Hascup ER. Alzheimer's Disease: The Link Between Amyloid-β and Neurovascular Dysfunction. J Alzheimers Dis. 2020;76(4):1179. doi:10.3233/JAD-200473
65. Shang J, Yamashita T, Tian F, et al. Chronic cerebral hypoperfusion alters amyloid-β transport related proteins in the cortical blood vessels of Alzheimer's disease model mouse. Brain Res. 2019 Nov 15;1723:146379. doi:10.1016/j.brainres.2019.146379. Epub 2019 Aug 12.
66. Takahashi M, Oda Y, Sato K, Shirayama Y. Vascular risk factors and the relationships between cognitive impairment and hypoperfusion in late-onset Alzheimer's disease. Acta Neuropsychiatr. 2018 Dec;30(6):350-8. doi:10.1017/neu.2018.17. Epub 2018 Aug 22.
67. Govaerts K, Lechat B, Struys T, et al. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer's disease with amyloid and tau pathology. NMR Biomed. 2019 Feb;32(2):e4037. doi:10.1002/nbm.4037. Epub 2018 Nov 29.
68. Wang B, Han S. Inhibition of Inducible Nitric Oxide Synthase Attenuates Deficits in Synaptic Plasticity and Brain Functions Following Traumatic Brain Injury. Cerebellum. 2018 Aug;17(4):477-84. doi:10.1007/s12311-018-0934-5
69. Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab. 2018 Jan;38(1):103-15. doi:10.1177/0271678X17690761. Epub 2017 Feb 2.
70. Herrera MI, Udovin LD, Toro-Urrego N, et al. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome. Front Neurosci. 2018 May 31;12:339. doi:10.3389/fnins.2018.00339
71. Wang W, Zhao F, Ma X, et al. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener. 2020 May 29;15(1):30. doi:10.1186/s13024-020-00376-6
Review
For citations:
Nikolenko VN, Rizaeva NA, Bulygin KV, Anokhina VM, Bolotskaya AA. The role of oxidative stress in the development of Alzheimer's disease. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022;14(4):68-74. (In Russ.) https://doi.org/10.14412/2074-2711-2022-4-68-74