Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Reduced expression of the tumor necrosis factor gene in blood mononuclear cells in radiologically isolated syndrome – validation of transcriptome analysis results

https://doi.org/10.14412/2074-2711-2022-1S-16-20

Abstract

Radiologically isolated syndrome (RIS) is a nosological form in which magnetic resonance imaging (MRI) reveals lesions of the white matter of the brain and/or spinal cord characteristic of multiple sclerosis (MS) in individuals in the absence of clinical symptoms of the disease. Among the studies devoted to RIS, the number of works aimed at studying the molecular mechanisms underlying its formation is very small. Previously, using next generation sequencing (NGS), we for the first time revealed significant differences in the expression profiles of several genes in peripheral blood mononuclear cells (MNCs) of individuals with RIS and healthy controls.
Objective: to conduct a validation analysis of changes in the expression of the CCR2, CX3CR1, and TNF genes that were observed during NGS in the MNCs of individuals with RIS compared with healthy individuals.
Patients and methods. Analysis of the expression of the CCR2, CX3CR1, and TNF genes was performed on independent validation cohorts (in MNCs of 14 subjects with RIS and 14 without RIS) by reverse transcription followed by real-time PCR.
Results and discussion. In MNCs of subjects with RIS, the TNF gene expression was significantly reduced compared to healthy controls (p=0.035; FC=0.78). No significant differences in expression levels were found for other genes.
Conclusion. The obtained data shows that disturbances of TNF gene expression preceding the clinical manifestations of MS, at least in individuals with RIS, which can lead to further dysregulation of several processes.

About the Authors

M. S. Kozin
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Maxim Sergeevich Kozin 

1, Ostrovityanova St., Moscow 117997

15A, Third Cherepkovskaya St., Moscow 121552 



N. M. Baulina
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

1, Ostrovityanova St., Moscow 117997



I. S. Kiselev
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

1, Ostrovityanova St., Moscow 117997



A. R. Kabaeva
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia
Russian Federation

1, Ostrovityanova St., Moscow 117997

1, Ostrovityanova St., Build. 10, Moscow 117997



A. N. Boyko
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia
Russian Federation

1, Ostrovityanova St., Moscow 117997

1, Ostrovityanova St., Build. 10, Moscow 117997 



O. O. Favorova
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

1, Ostrovityanova St., Moscow 117997



O. G. Kulakova
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

1, Ostrovityanova St., Moscow 117997



References

1. Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009 Mar 3;72(9):800-5. doi: 10.1212/01.wnl.0000335764.14513.1a. Epub 2008 Dec 10.

2. Lebrun-Frenay C, Kantarci O, Siva A, et al; 10-year RISC study group on behalf of SFSEP, OFSEP. Radiologically Isolated Syndrome: 10-Year Risk Estimate of a Clinical Event. Ann Neurol. 2020 Aug;88(2):407-17. doi: 10.1002/ana.25799. Epub 2020 Jun 29.

3. Кабаева АР, Бойко АН, Кулакова ОГ, Фаворова ОО. Радиологически изолированный синдром: прогноз и предикторы трансформации в рассеянный склероз. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(7-2):7-12. doi: 10.17116/jnevro20201200727 [Kabaeva AR, Boyko AN, Kulakova OG, Favorova OO. Radiologically isolated syndrome: prognosis and predictors of conversion to multiple sclerosis. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2020;120(7-2):7-12. doi: 10.17116/jnevro20201200727 (In Russ.)].

4. De Stefano N, Giorgio A, Tintore M, et al; MAGNIMS study group. Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult Scler. 2018 Feb;24(2):214-21. doi: 10.1177/1352458517717808

5. Okuda DT, Siva A, Kantarci O, et al; Radiologically Isolated Syndrome Consortium (RISC); Club Francophone de la Sclerose en Plaques (CFSEP). Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One. 2014 Mar 5;9(3):e90509. doi: 10.1371/journal.pone.0090509.eCollection 2014.

6. Labiano-Fontcuberta A, Benito-Leon J. Radiologically isolated syndrome should be treated with disease-modifying therapy – No. Mult Scler. 2017 Dec;23(14):1820-1. doi: 10.1177/1352458517726385. Epub 2017 Sep 14.

7. Thouvenot E. Should we treat patients with radiologically isolated syndrome (RIS)? Yes. Rev Neurol (Paris). 2018 Dec;174(10): 689-92. doi: 10.1016/j.neurol.2018.05.001. Epub 2018 Jul 2.

8. Matute-Blanch C, Villar LM, AlvarezCermeno JC, et al. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain. 2018 Apr 1;141(4):1085-93. doi: 10.1093/brain/awy021

9. Pawlitzki M, Sweeney-Reed CM, Bittner D, et al. CSF-Progranulin and Neurofilament Light Chain Levels in Patients With Radiologically Isolated Syndrome – Sign of Inflammation. Front Neurol. 2018 Dec 18;9:1075. doi: 10.3389/fneur.2018.01075

10. Rossi S, Motta C, Studer V, et al. Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult Scler. 2015 Oct; 21(11):1443-52. doi: 10.1177/1352458514564482. Epub 2015 Jan 12.

11. Sehitoglu E, Cavus F, Ulusoy C, et al. Sorcin antibody as a possible predictive factor in conversion from radiologically isolated syndrome to multiple sclerosis: a preliminary study. Inflamm Res. 2014 Oct;63(10):799-801. doi: 10.1007/s00011-014-0754-0. Epub 2014 Jul 8.

12. Kozin M, Kiselev I, Baulina N, et al. Global transcriptome profiling in peripheral blood mononuclear cells identifies dysregulation of immune processes in individuals with radiologically isolated syndrome. Mult Scler Relat Disord. 2022 Feb;58:103469. doi: 10.1016/j.msard.2021.103469. Epub 2021 Dec 20.

13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402-8. doi: 10.1006/meth.2001.1262

14. Fresegna D, Bullitta S, Musella A, et al. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells. 2020 Oct 14;9(10):2290. doi: 10.3390/cells9102290

15. Achiron A, Grotto I, Balicer R, et al. Microarray analysis identifies altered regulation of nuclear receptor family members in the predisease state of multiple sclerosis. Neurobiol Dis. 2010 May;38(2):201-9. doi: 10.1016/j.nbd.2009.12.029. Epub 2010 Jan 14.

16. Ronin E, Pouchy C, Khosravi M, et al. Tissue-restricted control of established central nervous system autoimmunity by TNF receptor 2-expressing Treg cells. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13):e2014043118. doi: 10.1073/pnas.2014043118

17. Probert L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience. 2015 Aug 27;302: 2-22. doi: 10.1016/j.neuroscience.2015.06.038. Epub 2015 Jun 24.

18. Kaltsonoudis E, Zikou AK, Voulgari PV, et al. Neurological adverse events in patients receiving anti-TNF therapy: a prospective imaging and electrophysiological study. Arthritis Res Ther. 2014 Jun 17;16(3):R125. doi: 10.1186/ar4582

19. Kunchok A, Aksamit AJ, Davis JM 3rd, et al. Association Between Tumor Necrosis Factor Inhibitor Exposure and Inflammatory Central Nervous System Events. JAMA Neurol. 2020 Aug 1;77(8):937-46. doi: 10.1001/jamaneurol.2020.1162

20. Cortese R, Prosperini L, Stasolla A, et al. Clinical course of central nervous system demyelinating neurological adverse events associated with anti-TNF therapy. J Neurol. 2021 Aug;268(8):2895-9. doi: 10.1007/s00415-021-10460-6. Epub 2021 Feb 20.

21. Kopp TI, Delcoigne B, Arkema EV, et al. Risk of neuroinflammatory events in arthritis patients treated with tumour necrosis factor alpha inhibitors: a collaborative populationbased cohort study from Denmark and Sweden. Ann Rheum Dis. 2020 May;79(5):566-72. doi: 10.1136/annrheumdis-2019-216693. Epub 2020 Mar 11.

22. Skurkovich S, Boiko A, Beliaeva I, et al. Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. Mult Scler. 2001 Oct;7(5):277-84. doi: 10.1177/135245850100700502

23. Van Oosten BW, Barkhof F, Truyen L, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology. 1996 Dec;47(6):1531-4. doi: 10.1212/wnl.47.6.1531

24. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology. 1999 Aug 11;53(3):457-65.


Review

For citations:


Kozin MS, Baulina NM, Kiselev IS, Kabaeva AR, Boyko AN, Favorova OO, Kulakova OG. Reduced expression of the tumor necrosis factor gene in blood mononuclear cells in radiologically isolated syndrome – validation of transcriptome analysis results. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022;14(1S):16-20. (In Russ.) https://doi.org/10.14412/2074-2711-2022-1S-16-20

Views: 494


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)