Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Changes in retinal structures as markers of multiple sclerosis progression

https://doi.org/10.14412/2074-2711-2021-6-55-61

Full Text:

Abstract

The involvement of the visual pathway in multiple sclerosis (MS) pathology determines the importance of studying the structures of the retina for earlier diagnosis and monitoring the severity of the neurodegeneration. The introduction of the reference method of optical coherence tomography (OCT) allows high resolution in vivo visualization of the retinal structures.

Objective: to identify changes in various retinal structures in remitting (RMS) and secondary-progressive (SPMS) MS phenotypes.

Patients and methods. The study included 80 patients with RMS (n=48) and SPMS (n=32); the control group included 20 age- and sex-adjusted healthy individuals. Clinical assessment was carried out using the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Severity Score (MSSS). All patients were examined by an ophthalmologist. To assess changes in the retina, OCT was performed using the RTVue XR Avanti apparatus (Optovue, USA).

Results and discussion. We found a significant (p<0.001) decrease in the thickness of the retina of the foveal and parafoveal regions, the thickness of the ganglionic cell complex when comparing the parameters of the retina of the control group and patients with RMS. There was also a significant (p<0.01) decrease in the retinal thickness in the perifoveal region, the thickness of the layer of retinal nerve fibers, the magnitude of focal and global losses. During comparation of the retinal OCT data between patients with RMS and SPMS, we revealed significant differences (p<0.001) in the thickness of the retinal nerve fiber layer, the retinal thickness in the parafoveal and foveal regions, and a significant (p<0.01) decrease in the thickness of the peripheral region, the thickness of the ganglionic cell complex, the volume of focal and global losses. Assessment of the correlations of OCT parameters with the EDSS and MSSS scales in both phenotypes showed a single significant (p<0.05) strong negative correlation (r=-0.70) of the EDSS score and retinal thickness in the foveal region in patients with SPMS.

Conclusion. As a domain of criteria for the MS course without signs of disease activity (No Evidence of Disease Activity, NEDA), it is advisable to use retinal OCT with analysis of the retinal thickness in the foveal region, the thickness of the retinal nerve fiber layer, the ganglion cell complex for dynamic monitoring of the inflammatory process activity in patients with RMS and assessment of its progression in patients with SPMS.

About the Authors

M. O. Poplyak
City Outpatient Clinic № 102, Saint Petersburg
Russian Federation

 5, Koroleva prosp., Saint Petersburg 197341, Russia 



A. G. Trufanov
S.M. Kirov Military Medical Academy
Russian Federation

 6, Academician Lebedev St., Saint Petersburg 194044, Russia 



A. V. Temniy
S.M. Kirov Military Medical Academy
Russian Federation

 6, Academician Lebedev St., Saint Petersburg 194044, Russia 



D. S. Maltsev
S.M. Kirov Military Medical Academy
Russian Federation

 6, Academician Lebedev St., Saint Petersburg 194044, Russia 



O. B. Chakchir
University under the Interparliamentary Assembly of EurAsEC
Russian Federation

 4/1, Smolyachkova St., Saint Petersburg 194044, Russia 



A. V. Mikheev
University under the Interparliamentary Assembly of EurAsEC
Russian Federation

 4/1, Smolyachkova St., Saint Petersburg 194044, Russia 



D. I. Skulyabin
S.M. Kirov Military Medical Academy
Russian Federation

 6, Academician Lebedev St., Saint Petersburg 194044, Russia 



G. N. Bisaga
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Russian Federation

 2, Akkuratov St., Saint Petersburg 197341, Russia 



I. V. Litvinenko
S.M. Kirov Military Medical Academy
Russian Federation

 6, Academician Lebedev St., Saint Petersburg 194044, Russia 



M. M. Odinak
S.M. Kirov Military Medical Academy
Russian Federation

 6, Academician Lebedev St., Saint Petersburg 194044, Russia 



References

1. Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol. 2004 Jan;137(1):156-69. doi: 10.1016/s0002-9394(03)00792-x

2. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991 Nov 22;254(5035):1178-81. doi: 10.1126/science.1957169

3. Aumann S, Donner S, Fischer J, et al. Optical Coherence Tomography (OCT): Principle and Technical Realization. 2019 Aug 14. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham (CH): Springer; 2019. Chapter 3. doi: 10.1007/978-3-030-16638-0_3

4. Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell Journal. 2017 Apr-Jun;19(1):1-10. doi: 10.22074/cellj.2016.4867. Epub 2016 Dec 21.

5. Bisaga GN. Rasseyannyy skleroz: ot morfologii k patogenezu [Multiple sclerosis: from morphology to pathogenesis]. St. Petersburg; 2015. 104 p. (In Russ.).

6. Beecham AH, Patsopoulos NA, Xifara DK, et al. International Multiple Sclerosis Genetics Consortium (IMSGC). Analysis of immunerelated loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013 Nov;45(11):1353-60. doi: 10.1038/ng.2770.Epub 2013 Sep 29.

7. Shmidt TE, Jahno NN. Rasseyannyy skleroz: rukovodstvo dlya vrachey [Multiple Sclerosis: a guide for doctors]. Moscow: MEDpressinform; 2017. 280 p. (In Russ.).

8. Compston A, McDonald I, Noseworthy J, et al. McAlpine's Multiple Sclerosis: 4th ed. Elsevier; 2006. 982 p.

9. Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. Eye (Lond). 2018 May;32(5):884-8. doi: 10.1038/s41433-017-0010-2. Epub 2018 Feb 2.

10. Lassmann H. Multiple Sclerosis Pathology. Cold Spring Harb Perspect Med. 2018 Mar 1;8(3):a028936. doi: 10.1101/cshperspect.a028936

11. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology. 1983 Nov;33(11):1444-52. doi: 10.1212/wnl.33.11.1444

12. Roxburgh RHSR, Seaman SR, Masterman T, et al. Multiple sclerosis severityscore: using disability and disease duration to rate disease severity. Neurology. 2005 Apr 12;64(7):1144-51. doi: 10.1212/01.WNL.0000156155.19270.F8

13. Shpak AA. A new nomenclature of the optical coherence tomography. Oftal’mologiya = Fyodorov Journal of Ophthalmic Surgery. 2015;(3):80-2 (In Russ.).

14. Lumbroso B, Rispoli M. Practical handbook of OCT. 1st ed. New Delhi: Jaypee Brothers; 2012. P. 1-83.

15. Pandit L. No Evidence of Disease Activity (NEDA) in Multiple Sclerosis – Shifting the Goal Posts. Ann Indian Acad Neurol. 2019 JulSep;22(3):261-3. doi: 10.4103/aian.AIAN_159_19

16. Kappos L, De Stefano N, Freedman MS, et al. Inclusion of brain volume loss in a revised measure of 'no evidence of disease activity' (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016 Sep;22(10):1297-305. doi: 10.1177/1352458515616701. Epub 2015 Nov 19.

17. Afanas'yev YuI, Yurina NA, editors. Gistologiya: Uchebnik [Histology: Textbook]. 5th ed., rev. and add. Moscow: Medicine; 2002.744 p. (In Russ.).

18. Nozdrachjov AD, Bazhenov YuI, Barannikova IA, et al. Nachala fiziologii: Uchebnik dlya vuzov [The beginnings of Physiology: A textbook for universities]. Ed. A.D. Nozdrachev. St. Petersburg: Lan’; 2001. 1088 p. (In Russ.).

19. Pulicken M, Gordon-Lipkin E, Balcer LJ, et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 007 Nov 27;69(22):2085-92. doi: 10.1212/01.wnl.0000294876.49861.dc

20. Oberwahrenbrock T, Schippling S, Ringelstein M, et al. Retinal damage in multiple sclerosis disease subtypes measured by highresolution optical coherence tomography. Mult Scler Int. 2012;2012:530305. doi: 10.1155/2012/530305. Epub 2012 Jul 25.

21. Costello F, Hodge W, Pan YI, et al. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci. 2009 Jun 15;281(1-2):74-9. doi: 10.1016/j.jns.2009.02.354. Epub 2009 Mar 20.

22. Petzold A, Balcer LJ, Calabresi PA, et al. ERN-EYE IMSVISUAL. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017 Oct;16(10):797-812. doi: 10.1016/S1474-4422(17)30278-8. Epub 2017 Sep 12.

23. Pietroboni AM, Carandini T, Dell'Arti L, et al. Evidence of retinal anterograde neurodegeneration in the very early stages of multiple sclerosis: a longitudinal OCT study. Neurol Sci. 2020 Nov;41(11):3175-83. doi: 10.1007/s10072-020-04431-4. Epub 2020 Apr 30.


Review

For citations:


Poplyak M.O., Trufanov A.G., Temniy A.V., Maltsev D.S., Chakchir O.B., Mikheev A.V., Skulyabin D.I., Bisaga G.N., Litvinenko I.V., Odinak M.M. Changes in retinal structures as markers of multiple sclerosis progression. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(6):55-61. (In Russ.) https://doi.org/10.14412/2074-2711-2021-6-55-61

Views: 157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)