Preview

Neurology, Neuropsychiatry, Psychosomatics

Advanced search

Molecular mechanisms of myoprotective action of chondroitin sulfate and glucosamine sulfate in sarcopenia

https://doi.org/10.14412/2074-2711-2019-1-117-124

Full Text:

Abstract

The pathogenesis of sarcopenia is complex and associated with impaired muscle protein synthesis, enhanced myocyte apoptosis, increased systemic inflammation, etc. The authors have carried out a systems analysis of 31 992 articles on sarcopenia, which are presented in the biomedical database PubMed, to clarify a set of comorbid interactions of sarcopenia with osteoarthritis, osteoporosis, and other diseases and to justify the use of chondroitin sulfate (CS) and glucosamine sulfate (GS) in these patients. The molecular mechanisms of action of CS and GS on the pathophysiology of sarcopenia have been formulated. By interacting with CD44 receptor, the CS/GS molecules inactivate the proinflammatory factor NF-kB, the activity of which is enhanced in muscle atrophy. In addition, CS/GS provides building material for the regeneration of connective tissue around the myocytes. Thus, the highly purified drugs CS /GS should be used to slow sarcopenia progression.

About the Authors

O. A. Gromova
Federal Research Center “Informatics and Management”, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Olga Alekseevna Gromova

Big Data Storage and Analysis CenterM.V. Lomonosov Moscow State University

44, Vavilov St., Build. 2, Moscow 119333, 1, Leninskie Gory, Moscow 119991



I. Yu. Torshin
Federal Research Center “Informatics and Management”, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Big Data Storage and Analysis CenterM.V. Lomonosov Moscow State University

44, Vavilov St., Build. 2, Moscow 119333, 1, Leninskie Gory, Moscow 119991



A. M. Lila
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522




N. A. Shostak
N.I. Pirogov Russian National Research Medical University
Russian Federation

A.I. Nesterov Department of Intermediate-Level Therapy

1, Ostrovityanov St., Moscow 117997



K. V. Rudakov
Federal Research Center “Informatics and Management”, Russian Academy of Sciences; M.V. Lomonosov Moscow State University
Russian Federation

Big Data Storage and Analysis CenterM.V. Lomonosov Moscow State University

44, Vavilov St., Build. 2, Moscow 119333, 1, Leninskie Gory, Moscow 119991



References

1. Marzetti E, Calvani R, Cesari M, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013 Oct;45(10): 2288-301. doi: 10.1016/j.biocel.2013.06.024. Epub 2013 Jul 8.

2. Gromova OA, Torshin IYu, Lila AM, Gromov AN. Molecular mechanisms of action of glucosamine sulfate in the treatment of degenerative-dystrophic diseases of the joints and spine: results of proteomic analysis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(2):38–44. (In Russ.). doi: 10.14412/2074-2711-2018-2-38-44

3. Lila AM, Gromova OA, Torshin Iyu, et al. Molecular effects of chondroguard in osteoarthritis and herniated discs. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(3):88–97. (In Russ.). doi: 10.14412/2074-2711-2017-3-88-97

4. Gromova OA, Torshin IYu, Lila AM, et al. Differential chemoreactome analysis of glucosamine sulfate and non-steroidal antiinflammatory drugs: promising synergistic drug combinations. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2018;12(2): 36–43. (In Russ.). doi: 10.14412/1996-7012-2018-2-36-43

5. Torshin IYu, Gromova OA, Lila AM, et al. The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2018;12(4):129–36. (In Russ.). Doi: 10.14412/1996-7012-2018-4-129-136

6. Torshin IYu, Gusev EI, Gromova OA, et al. World experience in studying the effects of omega-3 polyunsaturated fatty acids: impact on cognitive potential and some mental disorders. Zhurnal nevrologii i psikhiatrii im. C.C. Korsakova. 2011;111(11):79-86. (In Russ.).

7. Torshin IY. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013;23(2):319-27.

8. Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. part 1: factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(1):16-28.

9. Torshin IY, Rudakov KV. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015;25(4):577-87.

10. Torshin IYu, Rudakov KV. On metric spaces arising during formalization of recognition and classification problems. part 1: properties of compactness. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(2):274.

11. Torshin IY, Rudakov KV. On metric spaces arising during formalization of problems of recognition and classification. part 2: density properties. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016;26(3):483-96.

12. Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(2):184-99.

13. De Sire R, Rizzatti G, Ingravalle F, et al. Skeletal muscle-gut axis: emerging mechanisms of sarcopenia for intestinal and extra intestinal diseases. Minerva Gastroenterol Dietol. 2018 Dec; 64(4):351-362. doi: 10.23736/S1121-421X.18. 02511-4. Epub 2018 Jul 18.

14. Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 2005 Apr;19(6):668-70. doi: 10.1096/fj.04-2870fje. Epub 2005 Jan 21.

15. Cieniewski-Bernard C, Bastide B, Lefebvre T, et al. Identification of O-linked Nacetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol Cell Proteomics. 2004 Jun;3(6):577-85. doi: 10.1074/mcp.M400024-MCP200. Epub 2004 Feb 24.

16. Hedou J, Bastide B, Page A, et al. Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics. 2009 Apr;9(8): 2139-48. doi: 10.1002/pmic.200800617.

17. Lambert M, Bastide B, Cieniewski-Bernard C. Involvement of O-GlcNAcylation in the Skeletal Muscle Physiology and Physiopathology: Focus on Muscle Metabolism. Front Endocrinol (Lausanne). 2018 Oct 16;9:578. doi: 10.3389/fendo.2018.00578. eCollection 2018.

18. Walgren JL, Vincent TS, Schey KL, Buse MG. High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab. 2003 Feb; 284(2):E424-34. doi: 10.1152/ajpendo.00382.2002. Epub 2002 Oct 22.

19. Carberry S, Zweyer M, Swandulla D, Ohlendieck K. Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy. Int J Mol Med. 2012 Aug;30(2):229-34. doi: 10.3892/ijmm.2012.1006. Epub 2012 May 18.

20. Hitchcock AM, Yates KE, Costello CE, Zaia J. Comparative glycomics of connective tissue glycosaminoglycans. Proteomics. 2008 Apr;8(7):1384-97. doi: 10.1002/pmic.200700787.

21. Negroni E, Henault E, Chevalier F, et al. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate. J Neuropathol Exp Neurol. 2014 Aug;73(8):789- 97. doi: 10.1097/NEN.0000000000000098.

22. Mikami T, Koyama S, Yabuta Y, Kitagawa H. Chondroitin sulfate is a crucial determinant for skeletal muscle development/regeneration and improvement of muscular dystrophies. J Biol Chem. 2012 Nov 9;287(46):38531-42. doi: 10.1074/jbc.M111.336925. Epub 2012 Sep 24.

23. Davis AK, Carlson SS. Proteoglycans are present in the transverse tubule system of skeletal muscle. Matrix Biol. 1995 Oct;14(8):607-21.

24. Carrino DA, Oron U, Pechak DG, Caplan AI. Reinitiation of chondroitin sulphate proteoglycan synthesis in regenerating skeletal muscle. Development. 1988 Aug;103(4):641-56.

25. Sharma B, Dabur R. Role of Pro-inflammatory cytokines in regulation of skeletal muscle metabolism: A systematic review. Curr Med Chem. 2018 Nov 28. pii: CMC-EPUB-94873. doi: 10.2174/0929867326666181129095309.

26. Perez-Baos S, Prieto-Potin I, Roman-Blas JA, et al. Mediators and Patterns of Muscle Loss in Chronic Systemic Inflammation. Front Physiol. 2018 Apr 24;9:409. doi: 10.3389/fphys.2018.00409. eCollection 2018.

27. Little RD, Prieto-Potin I, Perez-Baos S, et al. Compensatory anabolic signaling in the sarcopenia of experimental chronic arthritis. Sci Rep. 2017 Jul 24;7(1):6311. doi: 10.1038/s41598-017-06581-6.

28. Calvani R, Marini F, Cesari M, et al. Systemic inflammation, body composition, and physical performance in old communitydwellers. J Cachexia Sarcopenia Muscle. 2017 Feb;8(1):69-77. doi: 10.1002/jcsm.12134. Epub 2016 Aug 8.

29. Madani A, Alack K, Richter MJ, Kruger K. Immune-regulating effects of exercise on cigarette smoke-induced inflammation. J Inflamm Res. 2018 Apr 24;11:155-167. doi: 10.2147/JIR.S141149. eCollection 2018.

30. Kaisari S, Rom O, Aizenbud D, Reznick AZ. Involvement of NF-kappaB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes. Adv Exp Med Biol. 2013;788:7-17. doi: 10.1007/978-94-007-6627-3_2.

31. Thoma A, Lightfoot AP. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv Exp Med Biol. 2018;1088:267-279. doi: 10.1007/978-981-13-1435-3_12.

32. Le NH, Kim CS, Park T, et al. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm. 2014;2014:834294. doi: 10.1155/2014/834294. Epub 2014 Dec 28.

33. Kim Y, Kim CS, Joe Y, et al. Quercetin Reduces Tumor Necrosis Factor Alpha-Induced Muscle Atrophy by Upregulation of Heme Oxygenase-1. J Med Food. 2018 Jun;21(6): 551-559. doi: 10.1089/jmf.2017.4108. Epub 2018 Mar 23.

34. Semba RD, Lauretani F, Ferrucci L. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007 Feb 15; 458(2):141-5. doi: 10.1016/j.abb.2006.11.025. Epub 2006 Dec 6.

35. Urban RJ, Dillon EL, Choudhary S, et al. Translational studies in older men using testosterone to treat sarcopenia. Trans Am Clin Climatol Assoc. 2014;125:27-42; discussion 42-4.

36. Scimeca M, Bonanno E, Piccirilli E, et al. Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients. Stem Cells Int. 2015;2015:469459. doi: 10.1155/2015/469459. Epub 2015 Jun 1.

37. Ghosh S, Lertwattanarak R, Garduno Jde J, et al. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci. 2015 Feb;70(2): 232-46. doi: 10.1093/gerona/glu067. Epub 2014 May 20.

38. Verzola D, Bonanni A, Sofia A, et al. Tolllike receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. J Cachexia Sarcopenia Muscle. 2017 Feb;8(1):131-144. doi: 10.1002/jcsm.12129. Epub 2016 Oct 18.

39. Dodge GR, Regatte RR, Noyszewski EA, et al. The Fate of Oral Glucosamine Traced by (13)C Labeling in the Dog. Cartilage. 2011 Jul; 2(3):279-85. doi: 10.1177/1947603510391780.

40. Petersen SG, Beyer N, Hansen M, et al. Nonsteroidal anti-inflammatory drug or glucosamine reduced pain and improved muscle strength with resistance training in a randomized controlled trial of knee osteoarthritis patients. Arch Phys Med Rehabil. 2011 Aug; 92(8):1185-93. doi: 10.1016/j.apmr.2011.03.009.

41. Undritsov VM, Undritsov IM, Serova LD. Age-related changes in the muscular system. In: Shabalin VN, editor. Rukovodstvo po gerontologii [Guide to gerontology]. Moscow: Tsitadel' Treid; 2005. P. 486—99.

42. Gromova OA, Torshin IYu. Vitamin D. Smena paradigmy [Vitamin D. Paradigm shift]. Moscow: GEOTAR-Media; 2017. 568 p.


For citation:


Gromova O.A., Torshin I.Y., Lila A.M., Shostak N.A., Rudakov K.V. Molecular mechanisms of myoprotective action of chondroitin sulfate and glucosamine sulfate in sarcopenia. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(1):117-124. (In Russ.) https://doi.org/10.14412/2074-2711-2019-1-117-124

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2711 (Print)
ISSN 2310-1342 (Online)